精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰ 線性代數 課程性質︰ 資訊系系必修 課程教師︰ 陳文進 開課學院: 電資學院 開課系所︰ 資訊工程學系 考試日期(年月日)︰ 1.15.2008 考試時限(分鐘): 14:30~17:20 是否需發放獎勵金:yes (如未明確表示,則不予發放) 試題 : 1.(15%) f(t)=t-1 and g(t)=t^2+t are two functions in Ρ2 ○ρ([0,1]) 1 and the inner product of f(t) and g(t) is ∫f(t)g(t)dt. Find the othogonal 0 complement of span(f,g). 2.(10%) Let V ○R^3 be the subspace defined by V = {(x1,x2,x3): x1 - x2 + x3 = 0}. Find the standard matrix for each of the following linear transformations. (i) Projection on V. (ii) Reflection across V. 3.(15%) Let A=[aij] be an n*n matrix where aij= -aji for all 1≦i,j≦n and n be an odd number. Find the dterminant of A. 4.(15%) Letλ be an eigenvalue of an n*n matrix A. (i) Find the eigenvalues of A^2 and A^2 + 2A + 3I, where I is the n*n identity matrix. (ii) Find the eigenvalues of A^(-1) and I - A^(-1). 5.(15%) A is a 3*3 matrix and χ, Aχ, A^2χ are three linear independent vectors where A^3χ = 3Aχ - 2A^2χ. Let P be the 3*3 matrix where χ, Aχ, and A^2χ are the first, second, and third columns of P. (i) Find the 3*3 matrix B such that P^(-1)AP = B. (ii) Find the determinant of (A + I). 6.(15%) Find the standard form of the following quadratic curve. 5x1^2 - 6x1x2 + 5x2^2 - 4x1 - 4x2 - 4 = 0 Please give also the new origin and the equations of the two new coordinate axes in the original coordinate system that makes the curve has the standard form.(意即給出在原座標中,曲線的中心座標與兩對稱軸所在直線的方程式) 7.(15%) If a0 = 0, a1 = a2 = 1, and a(k+1) = 2ak + a(k-1) - 2a(k-2) for k≧2, use methods of linear algebra to determine the formula for ak. -- ╖ ╔ ╭═╮ ╔═╮ ╔═╕ ╠╦╯ ║ ║ ╠═╣ ╠═ ╜╚╛ ╰═╯ ╚═╯ ╚═╛ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.30.84