精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰線性代數 課程性質︰系必修 課程教師︰陳文進 開課學院:電資學院 開課系所︰資訊系 考試日期(年月日)︰2009/11/12 考試時限(分鐘):210 min.(14:30 ~ 18:00) 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : Fall 2009 線性代數期中考 Exam time: 2:30 ~ 6:00 ┌ ┐ │ 1 1 2 2 3 │ 1. (10%) What is the rank of the matrix A =│ 0 1 1 -1 -1 │ │ 2 3 a+2 3 a+6│ │4 0 4 a+7 a+11│ └ ┘ 2. (10%) If A is an mxn matrix. Prove that the equations Ax = 0 and (A^T)Ax=0 have the same solutions. (A^T is the transpose of A). 3. (10%) If A, B are both invertible nxn matrix, explain briefly if each of the following five statements is true or false. a. (kA)^(-1) = k(A^(-1)) (k != 0) b. (A^2)^(-1) = (A^(-1))^2 c. (A+B)^(-1) = A^(-1) + B^(-1) d. (A^(-1) + B^(-1))^(-1) = A + B e. (AB)^(-1) = A^(-1)B^(-1) ┌ ┐ │1 1 2│ 4. (10%) Find the LU - decomposition of the matrix A =│2 1 3│ │3 3 7│ └ ┘ ┌ ┐ │1 2 1 2│ 5. (10%) Let A =│0 1 a a│, │1 a 0 1│ └ ┘ Find the value of a such that dim{xεR^4 | Ax = 0} = 2. 6. (10%) Find the basis for the subspace ┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐ │1│ │0│ │-1│ │2│ W = span(│0│, │1│) ╭╮span(│ 1│, │1│). │0│ │1│ │ 0│ │2│ └ ┘ └ ┘ └ ┘ └ ┘ 7. (10%) Prove that the vector set{u, v, w} is linear independent if and only if the vector set{u+v, v+w, w+u} is linear independent. 8. (14%) ┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐ │ 1│ │1│ │0│ │ 2│ │1│ (a) Show that span(│ 0│, │1│, │1│)=span(│ 1│, │2│) │-1│ │0│ │1│ │-1│ │1│ └ ┘ └ ┘ └ ┘ └ ┘ └ ┘ (b) Give the linear equation describing the subspace in (a). 9. (16%) Find a basis for each of the four subspaces R(A) = C(A^T), C(A), N(A), N(A^T) of the matrix (Don't use Row Exchange operation in Gaussian Elimination to obtain the Reduced Echelon Form). ┌ ┐ │1 3 0 -1 2│ A = │0 1 -2 1 0│ │2 5 3 -4 0│ │3 11 -4 -1 6│ └ ┘ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.249.22