精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分乙下 課程性質︰共同必修 課程教師︰陳其誠 開課學院:管理學院 開課系所︰管院各系、地理系、經濟系 考試日期(年月日)︰2007.04.03 考試時限(分鐘):110分鐘 是否需發放獎勵金:是 試題 : Write down your answers on the answer sheet. You should include all the necessary calculations and reasoning. (1) Calculate the following (definite, indefinite, imporper) integrals (6 points each): 2x √3 1 π/4 dx (a) ∫────── dx (b) ∫ ────── dx (c) ∫ ─────── x^2 - 4x + 3 1 (1 + x^2)^2 0 (x^2 + 1)^3/2 π/4 1 2 √(x^2 - 1) π/2 (d) ∫ ─── dx (e) ∫ ────── dx (f) ∫ cos^4 x dx 0 cos x 1 x^3 0 ∞ 1 1 1 (g) ∫ ── dx (h) ∫ ── dx 3 x^2 -1 x^3 (2) Calculate the following limits (7 points each): cos x - 1 4 ln (1 + x) (a) lim ───── (b) lim (1 + ──)^x (c) lim ───── x→0 x^2 x→∞ x x→0 x (3) Let υ = (4, 0, 3). (a) Find a vector μ = (a, b, c) such that a + b + c = 1, ║μ║ = 5 and μ‧υ = 0 (5 points) (b) Find a vector ω =/= (0, 0, 0) such that ω‧μ = 0 (5 points) (4) Calculate the area of the parallelogram having (2, 0, 7) and (4, 0, 3) as adjacent sides (8 points). (5) Suppose the volume of the parallepiped with (2, 0, 7) , (4, 0, 3) and (8, x, 1) as adjacent edges equals 22. What could be the value of x (7 points). -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.169.196.178