精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分乙下 課程性質︰共同必修 課程教師︰陳其誠 開課學院:管理學院 開課系所︰管院各系、地理系、經濟系 考試日期(年月日)︰2007.06.05 考試時限(分鐘):110分鐘 是否需發放獎勵金:是 試題 : Write down your answers on the answer sheet. You should include all the necessary calculations and reasoning. (1) Calculate the following multiple intergrals: 1 1 1 1 (a) ∫ ∫ (x + y) dxdy (b) ∫ ∫ e^(-x^2) dxdy 0 0 0 y (7 points) (8 points) (2) Calculate the following double intergrals ∫ ∫f(x, y)dA (7 points each): R (a) f(x, y) = xy , R is the triangle with vertices (-π, 0), (π, 0), (π,π/2) (b) f(x, y) = xe^x , R is the triangle bounded by x + y = 4, x = 0, y = 0 y (c) f(x, y) = ──── , 1 + x^2 R is the region bounded by y = 0, y = √x , x = 4 (d) f(x, y) = √(16 - x^2 - y^2) , R is the region bounded by x^2 + y^2 = 16 (e) f(x, y) = 2 , R is the region bounded by 1 ≦ x + y ≦ 2 , 3 ≦ x - 2y ≦ 4. (3) Calculate the triple intergral (10 points) 1 √(1 - x^2) √(1 - x^2 - y^2) ∫ ∫ ∫ √(x^2 + y^2 + z^2) dzdydx -1 -√(1 - x^2) -√(1 - x^2 - y^2) (4) Calculate the triple intergral (10 points) ∫∫∫ x + y + z dV Q where Q is the solid region bounded by 0 ≦ x + y + z ≦ 1 , 0 ≦ y + z ≦ 1 , 0 ≦ z ≦ 1 . (5) Let f(x, y) = xy and let D = {(x, y)│x^2 + y^2 ≦ 1}. (25 points) (a) Find critical points of f(x, y) inside the region D. And determine if every critical point is a local extrema. (b) Use the Lagrange multiplier method to determine the maximum / minimum of f(x, y) on the curve x^2 + y^2 = 1 . (c) Find the maximum / minimum of f(x, y) on D. (6) Suppose that f(x, y, z) is a continuous function, And assume that f(0, 0, 0) = 3. For each a, let a √(a^2 - x^2) √(a^2 - x^2 - y^2) V(a) = ∫ ∫ ∫ f(x, y, z) dzdydx -a -√(a^2 - x^2) -√(a^2 - x^2 - y^2) Explain why V(a) lim ──── = 4π (5 points) a→0 a^3 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.169.196.178 ※ 編輯: YSClaire 來自: 118.169.196.178 (02/20 17:52)