精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分乙上 課程性質︰必帶 課程教師︰張樹城 開課學院:生科院 開課系所︰生科系.生技系 考試日期(年月日)︰2017/01/12 考試時限(分鐘):110 試題 : 1.(60%) Compute the followings and justify your answers: (a) lim (1 + 1/x)^x. x→∞ 4 (b)∫ 3x/√(1+x^2) dx. 2 4 (c)∫ 1/(x ln x) dx. 2 1 (d)∫ √(1-x^2) dx. -1 (e)∫e^x sin x dx (f) lim (1/n) (cos (π/n) + cos (2π/n)+...+ cos (((n-1)π)/n) + cosπ). n→∞ 1 (g)∫ ln √(x^2 + 1) dx. 0 (h)∫sin^(-1) x dx. ∞ (l)∫ e^(-x^2) dx. -∞ 4 (j)∫ e^(√x) dx. 0 (k)∫sec x dx. ∞ (l)∫ (1/x^p)dx, p > 1. 1 II.(10%) (a) Find the solution y = y(x) of the following initial value problem: dy/dx = y, y(0) = 1. (b) Let f(x) be a continuous function defined by x f(t) f(x) = 1 + ∫ ────── dt, x > = 0. 0 (t+1)(t-2) Find f(1). III.(10%) The semi-circle x^2 + y^2 = r^2 is revloved about the x-axis to generating a sphere of radius r. (a) Find the surface area of the sphere of radius r. (b) Find the volume of the sphere of radius r. IV.(10%) The disk x^2 + y^2 < = a is revloved about the line x = b to generate a solid torus with a < b. (a) Find the surface area of the torus. (b) Find the volume of the solid torus. V.(10%) Let f: [0,1] → R be a continuous function satisfying 1 ∫ f(x) dx = 1/2. 0 1 (a) Define F(x) = f(x) - x, show that ∫ F(x) dx =0. 0 (b) Show that there exists c belongs to (0,1) such that f(c) = c. ∫∫∫ Happy Lunar New Year∫∫∫ -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.44.220.207 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1485276589.A.59A.html