精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分乙下 課程性質︰必帶 課程教師︰張樹城 開課學院:生科院 開課系所︰生科系.生技系 考試日期(年月日)︰2017/4/27 考試時限(分鐘):110 試題 : I.(10%) Compute the followings: (i) Find the limit of the squence: 根號2, 根號(2+根號2), 根號(2+根號(2+根號2)),.... x^2*y (ii) lim ───── (x,y)→(0,0) x^4+2*y^2 II.(10%) Verify following infinite series coverge or diverge? ∞ n^n (i) Σ ───── n=1 n! ∞ 1 (i) Σ (-1)^n ─── n=1 根號n III.(10%) Determine all x in which the following power series converge: ∞ x^n (i) Σ ───── n=1 n! ∞ x^n (i) Σ (-1)^n ─── n=0 n+1 IV.(10%) (i) Find the Maclaurin's series for the function f(x) = sin x at x=0. 1 1 (ii)Find lim (─── - ───) x→0 sin x x V.(10%) Find (z對x偏微分) and (z對y偏微分) at (0,0,0) for x^3+z^2+ye^(xz)+zcosy=0 VI.(10%) Define xy(x^2-y^2) ────── (x,y)≠(0,0) f(x,y) = x^2+y^2 0 (x,y)=(0,0) Compute fxy(0,0)和fyz(0,0). VII.(15%) (i)Find the normal line and tangent plane to the surface x^2+y^2+z=9 at(1,2,4) (ii)Use the linearization method to find the approximate of (根號27)*(三次根號1021) VIII.(10%) Find the absolute maximum and minimum values of f(x,y)=x^2+3y^2+2y over the unit disk D={(x,y):x^2+y^2 <=1 } IX.(15%)Let f(x,y) have continuous partial derivatives in an open region D in R^2 containing a point (a,b) where fx(a,b)=fy(a,b)=0. Define F(t):=f(a+th,b+tk), 0<=t<=1 and Q(t):=[h^2*fxx(a+th,b+tk)+2hk*fxy(a+th,b+tk)+k^2*fyy(a+th,b+tk)], (i)By using the chain rule to show that d ─F(t)=h*fx(a+th,b+tk)+k*fy(a+th,b+tk) dt and d^2 ── F(t)=Q(t) dt^2 (ii)By using the Taylor theorem to show that f(a+h,b+k)=f(a,b)+1/2*Q(t) from c between 0 and 1. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 1.160.167.59 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1493611986.A.13F.html ※ 編輯: lisasweet (1.160.167.59), 05/01/2017 12:26:37