精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰統計學上 課程性質︰森林系必修 課程教師︰關秉宗 開課學院:生農學院 開課系所︰神經認知學程 森林環境暨資源學系 考試日期(年月日)︰November 13, 2008 考試時限(分鐘):三節課(234到12點) 是否需發放獎勵金:是的 老師考試自由,open book,完全沒人監考,要交卷就自己交到講桌,就可以離開了 試題 : Please include the calculation details in your answers 1. A box contains 1000 light bulbs. The probability that there is at least 1 defective item in the box is 0.1, and the probability of having at least 2 defective bulbs is 0.05. Please find the probability for the following events. A. The box has no defective light bulb. (5%) B. The box has exactly 1 defective bulb. (5%) C. The box has at most 1 defecctive light bulb. (5%) 2. Let X be a r.v. with pdf f(x)=(5-x^2)/15 , x=-2,-1,0,1,2; f(x)=0 elsewhere. Please find (a)P(X<=0) (b)P(X<0) (c)P(X<=1) (d)P(X<=1.5) (e)P(│X│<=1) (f)P(│X│<1) (g)E(X) (h)VAR(X) (5% each) 3. Let X be a r.v. that represents the number of defects on a IC board with pdf P(X=i)=c/(i+1), i=0,1,2,3,4 Please find (a) The constant c such that f(x) will be a proper pdf (5%) (b) The mean and variance of X (5%) 4. Let X be a r.v. with pdf f(x)=1/(b-a), a<=x<=b (a) Please find the VAR of X (5%) (b) Please find the c.d.f of X (5%) 5. Please find the mean and variance of the following pdf (5% each) (a) f(x)=1/5, x=5,10,15,20,25 (b)f(x)=1, x=5 (c) f(x)= 3! 1 3 ──── * (──)^x *(──)^3-x x!(3-x)! 4 4 , x=0,1,2,3 6. Using binomial theorem, please verify that the pdf of a binomial distrubution sums to unity. (10%) -- 離開情感, 音樂只是空氣的振動,圖畫只是著色的紙張 文學只是串聯的文字,性愛只是活塞運動。 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.7.59