課程名稱︰微積分甲
課程性質︰共同必修
課程教師︰周青松
開課系所︰
考試時間︰2006.06.19 13:25~15:05
試題 :
Ⅰ.A) For vectors a = a_1 i + a_2 j + a_3 k, b = b_1 i + b_2 j + b_3 k, and
c = c_1 i + c_2 j + c_3 k, show that
| a_1 a_2 a_3 |
(a ╳ b) ‧ c = | b_1 b_2 b_3 |. (15%)
| c_1 c_2 c_3 |
B) Let γ be a differentiable vector function of t and set r = ║γ║.
Show that where r > 0
d γ 1 dγ
── (──) = ── [(γ ╳ ──) ╳ γ]. (15%)
dt r r^3 dt
2 2
Ⅱ. Find the directional derivative of f(x,y) = Ax + 2Bxy + Cy at (a,b)
toward (b,a),
A) if a > b;
B) if a < b. (20%)
Ⅲ. Set r = ║γ║ where γ = xi + yj + zk. If f is a continuous
differentiable function of r, then
γ
▽[f(r)] = f'(r) ──. (20%)
r
Ⅳ. Evaluate the double integral
3
∫∫ (3xy - y) dxdy, Ω is the region between y = |x| and y = -|x|,
Ω
x in [-1,1]. (15%)
Ⅴ. Evalutate the triple integral
x
∫∫∫ 2ye dxdydz, where T is the solial given by 0 ≦ y ≦ 1,
T
0 ≦ x ≦ y, 0 ≦ z ≦ x + y. (15%)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.240.198
※ 編輯: Nzing 來自: 140.112.240.198 (06/20 20:41)
※ chaochienyao:轉錄至看板 NTUBIME100HW 05/30 08:28
※ assignment:轉錄至看板 NTUBA00study 06/07 19:01