精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分甲 課程性質︰共同必修 課程教師︰周青松 開課系所︰ 考試時間︰2006.06.19 13:25~15:05 試題 : Ⅰ.A) For vectors a = a_1 i + a_2 j + a_3 k, b = b_1 i + b_2 j + b_3 k, and c = c_1 i + c_2 j + c_3 k, show that | a_1 a_2 a_3 | (a ╳ b) ‧ c = | b_1 b_2 b_3 |. (15%) | c_1 c_2 c_3 | B) Let γ be a differentiable vector function of t and set r = ║γ║. Show that where r > 0 d γ 1 dγ ── (──) = ── [(γ ╳ ──) ╳ γ]. (15%) dt r r^3 dt 2 2 Ⅱ. Find the directional derivative of f(x,y) = Ax + 2Bxy + Cy at (a,b) toward (b,a), A) if a > b; B) if a < b. (20%) Ⅲ. Set r = ║γ║ where γ = xi + yj + zk. If f is a continuous differentiable function of r, then γ ▽[f(r)] = f'(r) ──. (20%) r Ⅳ. Evaluate the double integral 3 ∫∫ (3xy - y) dxdy, Ω is the region between y = |x| and y = -|x|, Ω x in [-1,1]. (15%) Ⅴ. Evalutate the triple integral x ∫∫∫ 2ye dxdydz, where T is the solial given by 0 ≦ y ≦ 1, T 0 ≦ x ≦ y, 0 ≦ z ≦ x + y. (15%) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.240.198 ※ 編輯: Nzing 來自: 140.112.240.198 (06/20 20:41) chaochienyao:轉錄至看板 NTUBIME100HW 05/30 08:28 assignment:轉錄至看板 NTUBA00study 06/07 19:01