精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分甲 課程性質︰數學 - 微積分 課程教師︰周青松 開課學院:(如下) 開課系所︰生機、生工、地質、地理、工管等 考試日期(年月日)︰2008/4/14 星期一 考試時限(分鐘):1:20~3:10 遲到20分鐘不得進場 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : 1.(A) Show that lim (1+1/n)^n = e n→∞ (B) For each real x, prove that (1+x/n)^n → e^x n→∞ 2.(A) Prove that the function f(x)= ke^(-kx), x>=0 0 , x<0 is a probability exponential density function. (B) Calculate the standard deviation for the exponential density function. 3.Let Σak be a series with nonnegative terms, and suppose that (ak)^(1/k)→ρ Show that (A) if ρ<1 , then Σak converges. (B) if ρ>1 , then Σak diverges. 4.(A) (i) By using L'Hopital's rule , (ii) by using power series, to evaluate the limit: lim e^x-1-x x→0 ---------- x(arctanx) (B) Find a power series representation for the improper integral x ∫ arctant/t dt 0 5.(A) Deduce the differentiation formula d/dx coshx = sinhx from the expansion of sinhx and coshx in powers of x. (B) Find a numerical estimate for: 1 ∫ e^(-x^2) dx 0 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.241.205