精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分甲 課程性質︰共同必修 課程教師︰周青松 開課系所︰ 考試時間︰2006.04.21 08:10~09:50 試題 : Ⅰ. Calculate the indicated limit. 1 x t^2 A) lim (── ∫ e dt) x→∞ x 0 1 x 1 B) lim ── ∫ sin(────) dt x→∞ x 0 t + 1 Ⅱ. Evaluate the improper integrals that converge. ∞ -px A) ∫ e dx, p > 0 0 0 x B) ∫ xe dx -∞ ∞ C) ∫ cosh x dx 0 π/2 cos x D) ∫ ───── dx 0 √(sin x) Ⅲ. A) Show that k ∞ (-1) 2k cos x = Σ ──── x for all real. (2k)! B) Derive the series expansion: 3 5 1 + x x x ln (────) = 2 ( x + ── + ── + … ) for -1 < x < 1 1 - x 3 5 Ⅳ. Evaluate the given limit in two ways: (a) Using L'Hôpital's rule, and (b) Using power series. sin x - x A) lim ────── x→0 x^2 x e - 1 - x B) lim ────── x→0 x arctan x Ⅴ. Find a power series representation for the improper integral. x ln (1+t) A) ∫ ───── dt 0 t x sinh t B) ∫ ──── dt 0 t (每大題均20分) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.240.198 assignment:轉錄至看板 NTUBA00study 02/23 13:58 chaochienyao:轉錄至看板 NTUBIME100HW 04/08 11:13