推 axisaxes:真是有求必應呀XD 07/06 19:01
課程名稱︰微積分甲
課程性質︰數學 - 微積分
課程教師︰周青松
開課學院:(如下)
開課系所︰生機、生工、地質、地理、工管等
考試日期(年月日)︰ 2008/06/13黑色星期五
考試時限(分鐘):8:10---10:00 遲到20分鐘不得進場
是否需發放獎勵金:是
(如未明確表示,則不予發放)
試題 :
I. For vector a=a1 i + a2 j + a3 k
and b=b1 i + b2 j + b3 k
A) Show that
| i j k|
a x b = |a1 a2 a3|
|b1 b2 b3|
2 2 2 2
B) Verify : ∥a x b∥ + (a · b) = ∥a∥∥b∥
II.
2
A) Find f(t) given that f'(t) = 2costi - tsint j + 2tk , and
f(0) = j + 3k
B) Let γ be a differentiable vector function of t and set r = ║γ║.
Show that, where r ≠ 0
d γ 1 dγ
── (──) = ── [(γ x ──) x γ]
dt r r^3 dt
III.
2
A) Find the function with gradient F(x,y,z) = yzi+ (xz + 2yz)j+ (xy + y )k
B) Find the directional derivative of f(x,y,x) = z㏑(x/y) at (1,1,2)
toward the point (2,2,1).
IV.
A) Let U be an open connected set and let f be a differentiable function on U.
If ▽f(x) = 0 for all x in U, then f is constant on U.
1 3 3
B) Use the chain rule to find the derivative of f(x,y) =—(x + y )
3
with sespect to t along the ellipse γ(t) = acosti+bsintj
V.
A) Evaluate the double integral
3
∫∫ (3xy - y) dxdy ,Ω is the region between y = |x| and y = -|x|,
Ω
x in [-1,1].
B) Evaluate the trible integral
x
∫∫∫ 2ye dxdydz, where T is the solial
T
∕ given by 0 ≦ y ≦ 1 , 0 ≦ x ≦ y
﹨ and 0 ≦ z ≦ x + y.
---每大題均20分---
--
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 218.160.248.119