精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分甲 課程性質︰數學 - 微積分 課程教師︰周青松 開課學院:(如下) 開課系所︰生機、生工、地質、地理、工管等 考試日期(年月日)︰ 2008/06/13黑色星期五 考試時限(分鐘):8:10---10:00 遲到20分鐘不得進場 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 :            I. For vector a=a1 i + a2 j + a3 k and b=b1 i + b2 j + b3 k A) Show that            | i j k| a x b = |a1 a2 a3|            |b1 b2 b3|            2  2 2 2 B) Verify : ∥a x b∥ + (a · b) = ∥a∥∥b∥ II. 2 A) Find f(t) given that f'(t) = 2costi - tsint j + 2tk , and f(0) = j + 3k B) Let γ be a differentiable vector function of t and set r = ║γ║. Show that, where r ≠ 0 d γ 1 dγ ── (──) = ── [(γ x ──) x γ] dt r r^3 dt III. 2 A) Find the function with gradient F(x,y,z) = yzi+ (xz + 2yz)j+ (xy + y )k B) Find the directional derivative of f(x,y,x) = z㏑(x/y) at (1,1,2) toward the point (2,2,1). IV. A) Let U be an open connected set and let f be a differentiable function on U. If ▽f(x) = 0 for all x in U, then f is constant on U. 1 3 3 B) Use the chain rule to find the derivative of f(x,y) =—(x + y ) 3 with sespect to t along the ellipse γ(t) = acosti+bsintj V. A) Evaluate the double integral 3 ∫∫ (3xy - y) dxdy ,Ω is the region between y = |x| and y = -|x|, Ω x in [-1,1]. B) Evaluate the trible integral x ∫∫∫ 2ye dxdydz, where T is the solial T ∕ given by 0 ≦ y ≦ 1 , 0 ≦ x ≦ y ﹨ and 0 ≦ z ≦ x + y. ---每大題均20分--- -- -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.160.248.119
axisaxes:真是有求必應呀XD 07/06 19:01