精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分甲 課程性質︰數學 - 微積分 課程教師︰周青松 開課學院:(如下) 開課系所︰生機、生工、地質、地理、工管等 考試日期(年月日)︰2008/1/11 星期五 考試時限(分鐘):8:10---10:00 遲到20分鐘不得進場 是否需發放獎勵金:是 (感謝) (如未明確表示,則不予發放) 試題 : 1. Let f be continuous on [a,b]. if G is any antiderivative function of f on [a,b], prove that b ∫ f(x)dx = G(b) - G(a) a 2. If f is continuous on [a,b] and u is a differentiable function of x with values in [a,b], to find derivative of u ∫ f(t)dt a 3. The base of a solid is the region between the 2 2 parabolas x = y and x = 3 - 2y Find the volume of the solid given that cross section perpendicular to the x-aixs are squares. 4. If a is positive and r is rational , show that r a a ∫ dt/t = r∫ dt/t 1 1 5. Prove that x as x →∞ , (1+1/x) → e ____ 2 -1 6. Show that F(x) = x/2 √a^2 -x^2 +a /2 sin(x/a) ,a>0 ____ is an anitderivative for f(x)=√a^2 -x^2 7. Determine A,B and c so that y = Acoshcx + Bsinhcx satisfies the condictions 4y" - y = 0 , y(0) = 1 , y'(0) = 2 Take c > 0 . (1~6題 每題均15分 第7題10分) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.242.3