精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分甲下 課程性質︰署修 課程教師︰周青松 開課系所︰數學系 考試時間︰2006/9/6 是否需發放獎勵金:m (如未明確表示,則不予發放) 試題 : I.  (A) Prove that, ∞ k 1   (i) if |x| < 1, then Σ x = ───     n=0 1-x ∞ k (ii) if |x| ≧ 1, then Σ x diverges.     n=0 ∞ k-1 1  (B) Show that Σ kx = ──── , for |x| < 1 k=0 (1-x)^2 II. ∞ n -αk  (A) Prove that, Σ k e k=0 converges for each nonnegative integer n and α > 0.  (B) Use the integral test to show that ∞ 1 Σ ─── converges for p > 1 k=1 k^p III.  (A) Prove that ∞ (-1)^k 2k cos(x) = Σ ──── x for all real x. k=0 (2k)!  (B) Show that ∞ 1 2k cosh(x) = Σ ─── x for all real x. k=0 (2k)! IV.  Find a power series representation for the improper integral x ln(1+t)  (A) ∫ ──── dt 0 t x sinh(t)  (B) ∫ ──── dt 0 t V.  (A) For each integer n and all γ≠0, where γ=xi+yj+zk and r =║γ║. Prove that n n-2 ▽r =(nr )γ  (B) Find the directional derivative of the function 2 f(x,y,z) = 2xz cos(πy) at the point P(1,2,-1) toward the point Q(2,1,3) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.39.53