精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰ 微積分上 課程性質︰ 課程教師︰ 周青松 開課學院: 開課系所︰ 考試日期(年月日)︰ 2007/7/中旬 考試時限(分鐘): 是否需發放獎勵金: 是 (如未明確表示,則不予發放) 試題 : 1. A). Give necessary and sufficient condition on A and B for the function { Ax-B , x≦1 f(x) ={ 3x , 1<x<2 {Bx^2-A , 2≦x to be continuous at x=1 but dis continuous at x=2. B). Find A and B given that the function f(x) ={x^3 , x≦1 {Ax+B , x>1 is differentiable at x=1. 2. A). Show that Sin x 1-cos x lim ──── = 1 and lim ──── = 0 x→0 x x→0 x B). Find A and B given that the derivative of { Ax^2+B x<-1 f(x) = { Bx^5+AX+4 x>=-1 is everywhere continuous 3. A). Let f and g be differentiable functions such that f'(x)=g(x) and g'(x)=f(x), and let H(x)=[f(x)]^2-[g(x)]^2. Find H'(x). B). Find the indicated derivative: d ─[Sin(f(3x))] when f differentiable dx 4. A). Find f given that f'(x)=6x^2-7x-5 for all real x and f(2)=1 π π B). Set f(x)=sec^2 x and g(x)=tan^2 x on the interval (-─ , ─) π π 2 2 Show that f'(x)=g'(x) for all x in (-─ , ─) 2 2 5. Sketch the graph of the function f(x) = 1/4x^4 - 2x^2 + 7/4 on [-3,3] -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 125.230.76.201
yeti:小嫩~~~ >///< 07/16 15:41