精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分甲上 課程性質︰暑修 課程教師︰周青松 開課學院︰理學院 開課系所︰ 考試日期(年月日)︰2009/7/29 考試時限(分鐘):110 min 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : 1. Find f(x) from the information given. (a) f'(x)=ax^2 + bx + c , and f(0)=0 ,where a,b,c are three constants. (b) f''(x)=cos x , f'(0)=1 ,and f(0)=2. 2. (a) Sketch the region Ω bounded by y=x^2 and y=2-x. Use the washer-method to find the volume of the solid generated by revolving this region about the x-axis. (b) Sketch the region Ω bounded by x=y^2 and x=2-y. Use the shell-method to find the volume of the solid generated by revolving this region about the y-axis. 3. (a) Differentiate f(x)=㏑(cos e^2x ) and calculate the integral sin(e^-2x) ∫──────dx e^2x (b) Evaluate ____ √2㏑3 ∫ xe^(-x^2 / 2) dx 0 4. (a) Show that for a > 0 ,we have dx x ∫────────── = arcsin── + C (a^2 - x^2)^(1/2) a (b) Show that for a≠0 , we have dx 1     x   ∫──────── = ── arctan── + C a^2 + x^2 a     a 5. (a) Show that d -1 1 ──(sinh x) =───────── dx (1 + x^2)^(1/2) where x is a real number. (b) Verifying the formula 1 -1 ∫─────────dx = sinh (x/a) + C (x^2 + a^2)^(1/2) where a is a positive constant. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.7.59