課程名稱︰微積分甲上
課程性質︰暑修
課程教師︰周青松
開課學院︰理學院
開課系所︰
考試日期(年月日)︰2009/7/29
考試時限(分鐘):110 min
是否需發放獎勵金:是
(如未明確表示,則不予發放)
試題 :
1. Find f(x) from the information given.
(a) f'(x)=ax^2 + bx + c , and f(0)=0 ,where a,b,c are three constants.
(b) f''(x)=cos x , f'(0)=1 ,and f(0)=2.
2. (a) Sketch the region Ω bounded by y=x^2 and y=2-x. Use the washer-method
to find the volume of the solid generated by revolving this region about
the x-axis.
(b) Sketch the region Ω bounded by x=y^2 and x=2-y. Use the shell-method
to find the volume of the solid generated by revolving this region about
the y-axis.
3. (a) Differentiate f(x)=㏑(cos e^2x ) and calculate the integral
sin(e^-2x)
∫──────dx
e^2x
(b) Evaluate
____
√2㏑3
∫ xe^(-x^2 / 2) dx
0
4. (a) Show that for a > 0 ,we have
dx x
∫────────── = arcsin── + C
(a^2 - x^2)^(1/2) a
(b) Show that for a≠0 , we have
dx 1 x
∫──────── = ── arctan── + C
a^2 + x^2 a a
5. (a) Show that
d -1 1
──(sinh x) =─────────
dx (1 + x^2)^(1/2)
where x is a real number.
(b) Verifying the formula
1 -1
∫─────────dx = sinh (x/a) + C
(x^2 + a^2)^(1/2)
where a is a positive constant.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.7.59