作者iwantowaylaw (我要成為太鼓達人)
看板NTU-Exam
標題[試題]
時間Wed Aug 19 11:06:27 2009
課程名稱︰暑修微積分甲下
課程性質︰
課程教師︰周青松
開課學院:
開課系所︰
考試日期(年月日)︰2009/8/19
考試時限(分鐘):8:10~10:00
是否需發放獎勵金:要
(如未明確表示,則不予發放)
試題 :
A.
(a)
x^100n ∞
Determine whether the sequence { ——— } converges and if so ,
n! n=1
find the limit .
(b)
∞ x^k
Show that e^x= Σ —— for all real x .
k=0 k!
B.
(a)
x
Given that the function f is continuous , find the limit lim (1/x) ∫ f(t)dt .
x→0 0
(b)
Show that lim x^x = 1
x→0+
C.
A non-negative function f defined on (-∞,∞) is call a probability density
∞
function if ∫ f(x)dx = 1 . And the mean of a probability density function
-∞
∞
f is defined as the number μ = ∫ xf(x)dx .
-∞
(a)
Show that the function f(x) = ke^(-kx) , if x≧0
0 , if x<0
is a probability density function where k>0 is a given constant .
This function is called the exponential density function .
(b)
Find the mean of the exponential density function.
D.
(a)
∞
Show that ∫ x^(-p) dx converges if p>1 and diverges if 0<p≦1 .
-∞
(b)
∞
Show that Σ k^(-p) converges if and only if p>1 .
k=1
E.
(a)
Deduce the differentiation formulas
dsinhx/dx = coshx (雙曲正弦函數對x微分 = 雙曲餘弦函數)
from the expansion of sinhx and coshx in powers of x .
(b)
x
Fine a power series representation for the function ∫ (sinht/t) dt .
0
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.24.196
推 Hseuler :科科 機率出來了 08/19 12:58
推 nanmadol :D的(a)不用再加個dx嗎 08/20 11:31
→ nanmadol :而且後面也改成0<p≦1了 08/20 11:32
→ iwantowaylaw:謝謝樓上眼尖XD 08/20 15:42
※ 編輯: iwantowaylaw 來自: 140.112.4.94 (09/03 11:57)