精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰暑修微積分甲下 課程性質︰ 課程教師︰周青松 開課學院: 開課系所︰ 考試日期(年月日)︰2009/8/19 考試時限(分鐘):8:10~10:00 是否需發放獎勵金:要 (如未明確表示,則不予發放) 試題 : A. (a)                  x^100n  ∞ Determine whether the sequence {  ———  } converges and if so ,                   n!   n=1 find the limit . (b)  ∞ x^k Show that e^x= Σ —— for all real x .   k=0 k! B. (a) x Given that the function f is continuous , find the limit lim (1/x) ∫ f(t)dt . x→0 0 (b) Show that lim x^x = 1 x→0+ C. A non-negative function f defined on (-∞,∞) is call a probability density ∞ function if ∫ f(x)dx = 1 . And the mean of a probability density function -∞ ∞ f is defined as the number μ = ∫ xf(x)dx . -∞ (a) Show that the function f(x) = ke^(-kx) , if x≧0 0 , if x<0 is a probability density function where k>0 is a given constant . This function is called the exponential density function . (b) Find the mean of the exponential density function. D. (a) ∞ Show that ∫ x^(-p) dx converges if p>1 and diverges if 0<p≦1 . -∞ (b) ∞ Show that Σ k^(-p) converges if and only if p>1 . k=1 E. (a) Deduce the differentiation formulas dsinhx/dx = coshx (雙曲正弦函數對x微分 = 雙曲餘弦函數) from the expansion of sinhx and coshx in powers of x . (b) x Fine a power series representation for the function ∫ (sinht/t) dt . 0 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.24.196
Hseuler :科科 機率出來了 08/19 12:58
nanmadol :D的(a)不用再加個dx嗎 08/20 11:31
nanmadol :而且後面也改成0<p≦1了 08/20 11:32
iwantowaylaw:謝謝樓上眼尖XD 08/20 15:42
※ 編輯: iwantowaylaw 來自: 140.112.4.94 (09/03 11:57)