精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分甲下 課程性質︰必修 課程教師︰周青松 開課學院:管理學院、生農學院、理學院 開課系所︰工管系科管組、生工系、生機系、地質系 考試日期(年月日)︰2012/06/18 考試時限(分鐘):110分鐘 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : I. A. (10%) Show that ∫ dx/x^p convergent if p > 1 and diverges if 0<p≦1. B. (10%) Let p be a real number.Show that Σ 1/k^p converges if p>1 and diverges otherwise. II. Let Σak be a series with non-negative terms, and suppose that (ak)^(1/k) →ρ.Show that A.(10%)If ρ<1, then Σak converges. B.(10%)If ρ>1, then Σak diverges. III. A.(10%)Expand g(x)=e^(x/2) in powers of x-3. B.(10%)Prove that 1 1 1 ln x = ln a + — (x-a) - --(x-a)^2 + --(x-a)^3 - ... a 2a^2 3a^3 for 0<x≦2a. IV. A.(10%)Use L'Hospital rule to evaluate the limit e^x-1-x lim ------. x→0 x arctan x B.(10%)Find a power series representation for the improper integral x ∫ arctan t/t dt. 0 V.Set f(x)=xe^x A.(10%)Expand f(x) in a power series. B.(10%)Integrate the series and show that ∞ 1 1 Σ ----- = -- n=1 n!(n+2) 2 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.170.197.249