精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分甲上 課程性質︰必修 課程教師︰薛克民 開課學院:電資學院、工學院、管理學院 開課系所︰電機系、資工系、材料系、資管系 考試日期(年月日)︰99/12/21 考試時限(分鐘):30分鐘 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : ˙每題十分 ˙請詳述計算過程,無計算過程的答案不予計分 1. Find the length of the curve. y = ㏑[sec(x)] , 0 ≦ x ≦ π/4 (10%) d ㏑[sec(x)] tan(x)sec(x) y' = ─────── = ─────── = tan(x) dx sec(x) π/4 ________ π/4 ∫ √1 + [tan(x)]^2 dx = ∫ sec(x) dx 0 0 π/4 sec(x) + tan(x) = ∫ sec(x) * ─────────dx 0 sec(x) + tan(x) ┌ ┐π/4 = │ ㏑│sec(x) + tan(x)│ │ └ ┘0 = ㏑[√(2) + 1] - ㏑(1) = ㏑[√(2) + 1]2. Find the area of the resulting surface. y = x^2 from (1,1) to (2,4) is rotated about the y-axis. (10%) d(x^2) y' = ──── = 2x dx 2 ______ 2 _____ ∫ 2πx √1 + (2x)^2 dx = 2π * ∫ √4x^2 + 1 dx 1 1 ┌ 3/2 ┐2 = │ (π/6)(4x^2 + 1) │ └ ┘1 ┌ 3/2 3/2 ┐ = (π/6)│ 17 - 5 │ └ ┘t+z 3. Solve the differential equatation. dz/dt + e = 0 (10%) t z dz/dt = -(e * e ) -z t => ∫(-e ) dz = ∫(e ) dt => e^(-z) = e^(t) + C => -z = ㏑│e^(t) + C│ │ 1 │ => z = ㏑│──────│ │ e^(t) + C │4. Solve the differential equation. xy' = y + (x^2)*sin(x) , y(π) = 0 (10%) y' - y/x = x*sin(x) ∫(-1/x) dx -㏑|x| ∴ I(x) = e = e = 1/x 兩邊同乘 I(x): y' y => ──- ───= sin(x) x x^2 => (y/x)' = sin(x) => ∫ d(y/x) = ∫ sin(x) dx => y/x = -cos(x) + C => y = (-x)*cos(x) + C*x y(π) = π + π*C = 0 => C = -1 ∴ y = (-x)*cos(x) - x # -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.167.197.245 ※ 編輯: rod24574575 來自: 218.167.197.245 (01/08 22:31)
otis001255 :推原po強者!!! 01/09 01:01
rod24574575 :我只是個微甲爆掉的弱者... 01/09 20:49