精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分甲下 課程性質︰必修 課程教師︰薛克民 開課學院:電資學院、工學院、管理學院 開課系所︰電機系、資工系、材料系、資管系 考試日期(年月日)︰100/5/23 考試時限(分鐘):40分鐘 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : Write down all the details or you may not get the full grades. There could be some problems on the back of the paper. A. Let R be the region cut out by (x^2) + (y^2) ≦ 2, (x^2) + (z^2) ≦ 1 and x ≧ 0, y ≧ 0, z ≧ 0. Evaluate the integral ∫ xyz dxdydz R -[2(x^2) + (2√2)xy + 3(y^2)] B. Evaluate the integral ∫∫ e dxdy R^2 C. (a) Find the work done by the gravitational field mMG F(x) = -─── * x , x € R^3 (這裡的 x 皆是向量) |x|^3 in moving particle with mass m alone the curve (cos(t), -t, t) from (1, 0, 0) to (0, -π/2, π/2) 2xy dx + (x^2) dy (b) Evaluate ∫ ────────── C 1 + (x^4)(y^2) C is the curve x = log t, y = 2(t^2), 1 ≦ t ≦ √2 2 D. Evaluate the integral ∫ sin(2x + 2y + z) dxdydz R R = {(x,y,z)│(x^2) + (y^2) + (z^2) ≦ 16, 0 ≦ 2x + 2y + z ≦ 3π 2x + 2y + z Hint: Let u = ───────and use polar coordinate on every plane 3 2x + 2y + z = k for all k is a constant. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.167.193.80 ※ 編輯: rod24574575 來自: 218.167.193.80 (06/27 19:48)