精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰線性代數 課程性質︰必修 課程教師︰馮蟻剛 開課學院:電資學院 開課系所︰電機系 考試日期(年月日)︰2012/05/24 考試時限(分鐘):50 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : 1.Judge if the following statements are true or false. Give a concise proof to each true statement, and a counterexample to each false statement. (a)If an m by n matrix satisfies A^k = O, the zero matrix,for some positive integer k ,then 0 is the only eigenvalue of A. 15% 2 0 -1 (b)The matrix -1 3 -1 is diagonalizable. 15% 2 0 5 (c)If the m by n matrices A and B are diagonalizble then A+B is diagonalizable. 15% 2. Let u1 = [1 -1 0 1 1]^T, u2 = [2 -1 0 3 2]^T, u3 = [1 -1 1 1 1]^T and u4 = u2 + 2u3 - u1. Apply the Gram-Schmidt process to these vectors sequentially to find a set of four orthogonal vectors. 25% 3.(a) Let B = [b1 b2 ...bn] be a invertible n by n matrix and C = [c1 c2 ..cn]. Show that the matrix transformation T indeced by C(B^-1) statisfies T(bj) = cj for j = 1,2,3.....n. 15% (b) Let a linear operator U from R^n ti R^n be defined by U(bj) = bj+1 (注:j+1是下標) for j = 1,2,3...n-1 and U(bn) = 0. Prove that U^n = O, the zero operator, where U^n = UxUxUxU.....(n times). 15% -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.241.100