精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰個體經濟學 課程性質︰經濟學 課程教師︰林明仁 開課系所︰經濟學系 考試時間︰2006/01/10 試題 : Essay Problems 1.Which of the following might affect the price of a hamburger at Burger King? (不需文字說明,但請繪出每一種狀況之市場供需圖變化,並清楚標明均衡價格P* 將上 升 下降或不變) (1 points each) (1)The price of meat goes up. (2)A new restaurant tax(for Burger King) of 50 cent per hamburger is imposed. (3)A new restaurant tax(for Burger King) of $500 per year is imposed. (4)Burger King recalculates and realizes that the redecoration he did last month cost him 15% more than he thought it had. 2.Refer to Table 1. This table describes some of the relationship between output, marginal revenue, and marginal cost, but some data is unavailable. (4 points each) Table 1 Unit quantity Marginal cost marginal revenue average total cost 12 $5.00 $9.00 $9 13 $5.00 $9.00 unavailable 14 $6.00 $9.00 unavailable 15 unavailable $9.00 $8.4 16 unavailable $9.00 $8.4375 17 $13.00 $9.00 unavailable (1)If the firm is maximizing profit, how much profit is it earning? And how many units it produces?(If you have more than one answer for the units, you should write them all.) (2)就短期而言,請列出所謂廠商的"關廠條件"為何?請以關廠條件說明,不論此廠商 固定成本為何,該廠在短期均會持續營業。 (3)就長期而言,若此廠商持續營業而未關廠。你認為此廠商之利潤將為何?未什麼? 3.若某廠商甲每年以增加一倍機器設備之速度擴充產能(假設每台機器設備同質),假設添 購每台機器設備需花費$1,000,僱用每位員工年薪為$200元,除此之外甲廠無其他開銷 。已知甲廠最近四年營運概況整理如下表:(4 points each) Table 2 年度 機器設備(台) 僱用人員(人) 產量(噸) 2001 2 10 4 2002 4 20 12 2003 8 40 24 2004 16 80 32 (1)何謂規模報酬遞減(decreasing return to scale)?根據上表,請計算並判斷甲廠在 哪兩相鄰年度,其生產活動呈規模報酬遞減? (2)所謂規模經濟(economics of scale),意指長期平均成本(LAC)隨產量增加而遞減。 假設上述4年間,甲廠可完全自由調整其勞動與機器設備之僱用量,且無任何固定成 本。請計算每一年度之LAC,並判斷甲廠在哪兩相鄰年度,其生產活動符合規模經濟 。 4.Suppose that a firm is operating at appoint "off" its expansion path,where MRTS <PL/PK (4 points each) (1)Explain how the firm could increase its output without changing its total expenditure on inputs. (Hint:draw its isoquants and isocost) (2)Give an example that a firm is operating at appoint "on" its expansion path where MRTS < PL/PK。在此種情況下,假設該廠突遭員工罷工事件,試問產量 是否糟波及而減產? (Hint:draw its isoquants and isocost) 5.假設某完全競爭市場已達成長期均衡,市場價格為$5(每單位產品)。已知市場內某廠商 甲,其產量為100單位。請計算長期均衡下: (2 points each) (1)甲廠商生產每單位產品之邊際成本(MC),邊際收益(MR),平均收益(AR),平均成本(AC) (2)甲廠商總收益(TR),總成本(TC),廠商利潤(π)。 6.在國際間完全自由貿易下,關稅與其他進出口配額等貿易障礙應盡量避免。相對於完全 自由貿易,判斷在下列兩種狀況下,消費者剩餘,生產者剩餘,絕對損失(deaweight loss) 政府稅收將"增加,減少,不變或不確定"。所謂制定進口配額,意指"強制"限定進口額度 上限,且此上限低於完全自由貿易下的原有進口額。(本提請將答案已表格方式在答案紙 上作答,不需繪圖或說明)。 (8 points) Table 3 狀況 消費者剩餘 生產者剩餘 絕對損失 政府稅收 1.課徵進口關稅 2.制定進口配額 7.假設某知名網路拍賣公司e-bad正在販售新式數位相機,目前共有七位買家及六位賣家。 此七位買家對數位相機的最高願付價格為150,45,678,555,150,1000,20元,六位賣家取 得該數位相機的成本(假設即為其最低願售價格)為155,148,70,88,900,125元,且不論 買方賣方均誠實依照上述價格出價。 (4 points each) (1)該網站交易規則如下:"系統將自動為買賣雙方配對,買方出價最高者與賣方出價最低 者成交,買方出價次高者與賣方出價次低者成交,以下依此類推至最後可成交之組, 系統會依此組買賣雙方出價的平均數為市價(實際交易價格),此市價即為可成交各組 之實際交易金額。"請計算在上述交易系統運作下,此數位相機網路拍賣市場之消費 者剩餘,生產者剩餘,總剩餘分別為何? (2)乘上小題,若交易系統改直接以149元為實際交易價格,為願意以這個價格交易之買 賣雙方配對,對於有意願交易但人數較多的一方,採取所謂的"公平"之處理原則以抽 籤決定最後交易人選。請以總剩餘的角度,說明此種兼顧公平的處理原則,其效率性 較上一小題差。(本小題請用實際數據說明) 8.假設完全競爭市場中,某廠商乙之短期平均成本SAC(Q) = 0.02Q + 500/Q ,其產品市價 為$4(每單位),試問: (4 points each) (1)乙廠是否會歇業?若你的答案是不會歇業,則乙廠將生產多少單位產品,及其損益(利 潤或虧損)為何? (2)請判斷當市場價格降到每單位多少元以下乙廠將歇業?當市場價格漲到每單位多少元 以上乙廠將損益兩平? (3)是依照現有資訊判斷,當完全競爭市場處於長期均衡時,屆時市場均衡價格為$2,乙 廠是否退出市場?若乙廠未退出市場,對應其長期產量Q*,LAC(Q*)及LMC(Q*)之值將 為何? 9.考慮兩家獨立廠商甲 乙,其產品同屬一個完全競爭市場,且同時面對完全競爭之勞動與 要素市場(換句話說,產品價格與要素價格固定不變)。甲的生產函數為Q=F(L,K)= 2L^1/2 + K^1/2 (其中L為勞動僱用量,K為資本僱用量),乙的生產函數為Q = F(L,K)= Min{2L^1/2,K^1/2}。兩廠之開銷均來自於勞動僱用和資本投入,每單位工資水準w =$2, 每單位資本售價r = $20,兩廠每單位產品售價$100。 (Hint:乙廠為Leontief production function, Note that Min{x,y} =x if x<=y; Min{x,y}=y if y<=x) (4,8,8 points) (1)請判斷甲乙兩廠之生產函數分別為規模報酬不變(constant return to scale) 規模 報酬遞增(increasing return to scale)還是規模報酬遞減(decreasing retrun to scale)? (2)若目前兩廠之資本均固定為16單位(暫時無法調整),請分別算出兩廠之短期平均成ꔊ 本函數SAC(Q) 短期邊際成本函數SMC(Q),並以利潤極大化(MR=MC)之概念,解出兩廠 在短期的產量決策,並計算其利潤分別為何? (Hint:請注意乙廠在短期有最大產量之 限制),故其成本函數需將Q之範圍標明清楚。) (3)思考在長期的情況下,兩廠的勞動及資本僱用量均可完全自由調整而不受任何限制ꄊ 。請分別算出兩廠之長期平均成本函數LAC(Q) 長期邊際成本函數LMC(Q),並判斷在 長期競爭下,哪家廠商面臨退出市場之壓力較大? 10.Consider the student with an insatiable appetite for fast-food hamburgers. Assume that his utility can be expressed as Cobb-Douglas function U(x,y) = x^1/2˙y^1/2 where x is the number of McBurger hamburgers and y represents the number of King of Burger hamburgers. Assume that McBurger hamburgers cost $4, King of Burger hamburgers cost $2 each, and the student has $120 to spend on hambur- gers each semeseter. (4 points each) (1)Use Largrange multiplier (denotes as "λ") method. Find the values of x* y*, and λ* that maximize the student's utility with budget constraint. (2)Use Largrange multiplier (denotes as "λ") method. Find the value of x**, y** and λ** that maximize this student's utility with budget constraint, when the utility function is the natural logarithm of U(x,y), such as ~ U(x,y) = lnU(x,y). (3)Calculate the value of V* = U(x*,y*). (Hint:the value of indirect utility function.) (4)Given the utility constraint that satisfied U(x,y) = V*. Use Largrange multiplier(denotes as "λ") method, show your computations that the x*,y* maximize this student's expenditure with utility constraint. (Hint: duality). -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.228.80.249