課程名稱︰代數導論二
課程性質︰系定必修
課程教師︰李白飛 教授
開課系所︰數學系
考試時間︰2006/04/24 10:30-12:50
是否需發放獎勵金:否
(如未明確表示,則不予發放)
試題: Algebra II
1. Let F be an infinite field and f(x_1,...,x_n), g(x_1,...,x_n) two
polynomials in indetermines x_1,...,x_n over F with g(x_1,...,x_n)≠0.
Show that f(x_1,...,x_n)=0. (10 pts)
4 4 4 4
2. Express x +y +z +w as a polynomial of the elementary symmetric
polynomials in x, y, z, w. (15 pts)
3 2
3. Solve the cubic equation x +6ix -6x+2+4i=0 in radicals. (10 pts)
4 3 2
4. Solve the quartic equation x -6x +12x -6x-5=0 in radicals. (15 pts)
5. Let f_1(x), f_2(x), f_3(x), f_4(x) and g(x) be polynomials over Q such
that
5 5 2 5 3 5 2 3 4
f_1(x )+xf_2(x )+x f_3(x )+x f_4(x )=(1+x+x +x +x )g(x).
Show that g(x) is divisible by x-1 in Q[x]. (10 pts)
6. Let n>1 be an integer and φ_n(x) the n-th cyclotomic polynomial. Show
that φ_n(1)=p if n is a power of a prime p and φ_n(1)=1 otherwise.
(15 pts)
7. Find the minimal polynomial of sin6°over Q. (15 pts)
3
8. Find a rational number c such that the polynomial x -9x+c defines a
normal cubic fields. (10 pts)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.250.148
※ 編輯: monotones 來自: 140.112.250.148 (07/03 17:45)