作者windyukiaya (阿湯)
看板NTU-Exam
標題[試題] 98上 李聰成 微積分乙上 期末考
時間Thu Jan 14 21:54:00 2010
課程名稱︰微積分乙
課程性質︰共同必修
課程教師︰李聰成
開課學院:管院
開課系所︰
考試日期(年月日)︰09/1/14
考試時限(分鐘):10:20~13:00
是否需發放獎勵金:是
(如未明確表示,則不予發放)
試題 :
1.Evaluate the indefinite integral.
z^2
∫ -----dz
3 _____
√1+z^3
2.Find the area(面積) of the region(區域) enclosed by the line y = x-1 and the
parabola(拋物線) y^2 = 2x+6.
3.Evaluate the definite integral.
√3/4 dx
∫ -----
0 1+16x^2
4.Evaluate the limit.
1 x
lim -- ∫sin(t^2)dt
n→+∞ x^3 0
5.Evaluate the limit.
1 1 1 1
lim (--+--+--+...+--)
n→+∞ n+1 n+2 n+3 n+n
6.Use logarithmic differentiation to find the derivative of the function
x(x+1)(x+2)
y = ( ------- )^1/3 x > 2.
(x^2+1)(2x+3)
7.Show that f:[0,+∞) → (-1,1] is one-to-one and onto and find an formula for
the inverse function f^-1 where
1-√x
f(x) = ----.
1+√x
8.The disk(圓板) x^2+y^2≦a^2 is revolved(旋轉) about the line x = b (with b >
a > 0) to generate a solid called a torus. Find its volume(體積).
9.Find the second derivative.
d^2 x sin t _____
---∫ ( ∫ √1+u^4 du ) dt
dx^2 0 1
10.If f is a function continuous on (0,+∞) such that
x x
∫ f(t) dt = xe^2x + ∫ e^-t f(t) dt
1 1
for all x in (0,+∞), find an explicit formula for f(x).
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 118.160.175.21
※ 編輯: windyukiaya 來自: 118.160.175.21 (01/14 21:54)
※ 編輯: windyukiaya 來自: 118.160.175.21 (01/14 21:55)
推 alan0311 :推高中同學 01/14 21:56
→ windyukiaya :你是@@? 01/14 22:06
→ windyukiaya :阿我知道了XD 01/14 22:12
推 young9992 :推大學同學 01/14 22:23
推 alan0311 :樓樓上竟然忘了我@@ 01/14 22:35
→ windyukiaya :阿我看ID一開始認不出來啊@@ 想了一下才想到XD 01/14 22:37
推 ellenbeta :推同系同學!!!! 01/14 22:37
→ windyukiaya :某羊天天都看考古板欸XD 01/14 22:38
→ windyukiaya :我猜艾倫你是看海科科題目經過對吧XDDD 01/14 22:38
→ ellenbeta :不是你說你剛在po考古題 01/14 23:27
推 young9992 :因為某湯天天po考古題XD 01/15 22:52