精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分乙 課程性質︰共同必修 課程教師︰李聰成 開課學院:管院 開課系所︰ 考試日期(年月日)︰09/1/14 考試時限(分鐘):10:20~13:00 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : 1.Evaluate the indefinite integral.   z^2 ∫ -----dz 3 _____ √1+z^3 2.Find the area(面積) of the region(區域) enclosed by the line y = x-1 and the parabola(拋物線) y^2 = 2x+6. 3.Evaluate the definite integral.     √3/4 dx ∫ -----     0  1+16x^2 4.Evaluate the limit. 1  x lim -- ∫sin(t^2)dt n→+∞ x^3 0 5.Evaluate the limit. 1 1 1 1 lim (--+--+--+...+--) n→+∞ n+1 n+2 n+3 n+n 6.Use logarithmic differentiation to find the derivative of the function x(x+1)(x+2) y = ( ------- )^1/3 x > 2. (x^2+1)(2x+3) 7.Show that f:[0,+∞) → (-1,1] is one-to-one and onto and find an formula for the inverse function f^-1 where 1-√x f(x) = ----. 1+√x 8.The disk(圓板) x^2+y^2≦a^2 is revolved(旋轉) about the line x = b (with b > a > 0) to generate a solid called a torus. Find its volume(體積). 9.Find the second derivative.    d^2 x sin t _____ ---∫ ( ∫ √1+u^4 du ) dt dx^2 0 1 10.If f is a function continuous on (0,+∞) such that x x ∫ f(t) dt = xe^2x + ∫ e^-t f(t) dt 1 1 for all x in (0,+∞), find an explicit formula for f(x). -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.160.175.21 ※ 編輯: windyukiaya 來自: 118.160.175.21 (01/14 21:54) ※ 編輯: windyukiaya 來自: 118.160.175.21 (01/14 21:55)
alan0311 :推高中同學 01/14 21:56
windyukiaya :你是@@? 01/14 22:06
windyukiaya :阿我知道了XD 01/14 22:12
young9992 :推大學同學 01/14 22:23
alan0311 :樓樓上竟然忘了我@@ 01/14 22:35
windyukiaya :阿我看ID一開始認不出來啊@@ 想了一下才想到XD 01/14 22:37
ellenbeta :推同系同學!!!! 01/14 22:37
windyukiaya :某羊天天都看考古板欸XD 01/14 22:38
windyukiaya :我猜艾倫你是看海科科題目經過對吧XDDD 01/14 22:38
ellenbeta :不是你說你剛在po考古題 01/14 23:27
young9992 :因為某湯天天po考古題XD 01/15 22:52