精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰工程數學一 課程性質︰必修 課程教師︰李克強 開課學院:工學院 開課系所︰化工系 考試日期(年月日)︰2011/11/18 考試時限(分鐘):110min(後延長至130min) 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : (一) Solve the following ODEs (50%, 5% each) dy - 1 1.(----) = xy^3(1 + x^2)^(-----) dx 2 x 2.dx + (--- - siny) = 0 y dy y^2 + 2xy 3.(----) = ----------- dx y^2 dy 4.(----) + xy = xy^2 dx 5.y'y" = 2, y(0)=1, y'(0)=2 6.y"+4y'+5y = 0, y(0)=1, y'(0)=0 7.y"-3y'-4y = e^(-x) 8.y"+2y'+y = e^(x)cosx 9.y'''+y' = 0, y(0)=0, y'(0)=1, y"(0)=2 10.y'''-2y"-y'+2y = e^(4x) (二) Verify that e^(x) abd x are solutions of the homogeneous equation corresponding to (1-x)y"+xy'-y = 2(x-1)^(2)e^(-x), and find the general solution. (10%) (三) Find the solution of the following problems. (40%, 10% each) 1.y"+2y'+y = f(t), 1. 0≦t< 1 f(t){ }, y(0)=0 , y'(0)=1 0, t≧1 2.y"+3y'+2y = u(t-2), y(0)=0, y'(0)=1, where u(t-2) is a unit step function. 3.y"-y=2δ(t-1), y(0)=1, y'(0)=0, where δ(t-1) is an impulse function. 4.f(t) = 2t^(2) +∫f(t-τ)e^-(τ)dτ, τ[0,t](上下限範圍) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.22.94 ※ 編輯: tsf73 來自: 140.112.22.94 (11/18 15:27)