精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰工程數學 課程性質︰必修 課程教師︰盧中仁 開課學院:工學院 開課系所︰機械系 考試日期(年月日)︰99/11/03 考試時限(分鐘):30min 是否需發放獎勵金:是:) (如未明確表示,則不予發放) 試題 : 1. (50%) Consider y" + Ay' + By = 0 , in which A and B are constants and A^3 - 4B = 0 . Show that y1(x) = e^(-Ax/2) is one solution, and use reduction of order to find the second solution. 2. (50%) Find the general solution of y" - 6y' +8y = 3e^x 3. (25%) Find the Laplace transform of (t^2 + 1)H(t - 2) 4. (25%) Find the inverse Laplace transform of 1 / (s^2 - 2s - 3) 5. (50%) Use the Laplace transform to solve the initial value problem. (用其他方法沒有分數) 0 0 ≦ t < 1 y' + y = f(t) with f(t) = { 1 1 ≦ t < 2 and y(0) = 0 0 2 ≦ t ┌────────┬────────┬────────┬────────┐ │ f(t) │ F(s) │ f(t) │ F(s) │ ├────────┼────────┼────────┼────────┤ │t^n(n=0,1,2,..) │ n! / s^(n+1) │ f'(t) │ sF(s) - f(0) │ ├────────┼────────┼────────┼────────┤ │ e^at │ 1 / (s - a) │ ∫f(τ)dτ │ F(s) / s │ ├────────┼────────┼────────┼────────┤ │ cos(ωt) │s / (s^2 + ω^2)│ tf(t) │ -F'(s) │ ├────────┼────────┼────────┼────────┤ │ sin(ωt) │ω/ (s^2 + ω^2)│ e^at f(t) │ F(s - a) │ ├────────┼────────┼────────┼────────┤ │ δ(t - a) │ e^(-as) │f(t - a)H(t - a)│ e^(-as) F(s) │ └────────┴────────┴────────┴────────┘ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.243.213