課程名稱︰工程數學
課程性質︰必修
課程教師︰盧中仁
開課學院:工學院
開課系所︰機械系
考試日期(年月日)︰99/11/03
考試時限(分鐘):30min
是否需發放獎勵金:是:)
(如未明確表示,則不予發放)
試題 :
1. (50%) Consider y" + Ay' + By = 0 , in which A and B are constants and
A^3 - 4B = 0 . Show that y1(x) = e^(-Ax/2) is one solution, and
use reduction of order to find the second solution.
2. (50%) Find the general solution of y" - 6y' +8y = 3e^x
3. (25%) Find the Laplace transform of (t^2 + 1)H(t - 2)
4. (25%) Find the inverse Laplace transform of 1 / (s^2 - 2s - 3)
5. (50%) Use the Laplace transform to solve the initial value problem.
(用其他方法沒有分數)
0 0 ≦ t < 1
y' + y = f(t) with f(t) = { 1 1 ≦ t < 2 and y(0) = 0
0 2 ≦ t
┌────────┬────────┬────────┬────────┐
│ f(t) │ F(s) │ f(t) │ F(s) │
├────────┼────────┼────────┼────────┤
│t^n(n=0,1,2,..) │ n! / s^(n+1) │ f'(t) │ sF(s) - f(0) │
├────────┼────────┼────────┼────────┤
│ e^at │ 1 / (s - a) │ ∫f(τ)dτ │ F(s) / s │
├────────┼────────┼────────┼────────┤
│ cos(ωt) │s / (s^2 + ω^2)│ tf(t) │ -F'(s) │
├────────┼────────┼────────┼────────┤
│ sin(ωt) │ω/ (s^2 + ω^2)│ e^at f(t) │ F(s - a) │
├────────┼────────┼────────┼────────┤
│ δ(t - a) │ e^(-as) │f(t - a)H(t - a)│ e^(-as) F(s) │
└────────┴────────┴────────┴────────┘
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.243.213