作者harveyhs (Hango)
看板NTU-Exam
標題[試題] 99上 康明昌 微積分甲上 期中考
時間Thu Nov 18 20:38:04 2010
課程名稱:微積分甲上
課程性質:物理系必帶
課程教師:康明昌
開課學院:理學院
開課系所;物理系
考試日期:2010/11/16
考試時間:120分鐘
是否發放獎勵金:是
1.Define <an>=[((n^2)-1)^-0.5]+[((n^2)-4)^-0.5]+...+[((n^2)+(n-1)^2)^-0.5]
Find lim<an>. (10%)
n→∞
2.Find y=y(x) where y satisfies xy'=3y+x^3 and y(-exp(0.5))=exp(0.5)
(10%)
3.Evaluate the integral ʃx*cosx*exp(x)dx (10%)
(Hint: If you have a smart idea, go ahead.
Otherwise, find ʃx*cosx*exp(x)dx+ʃx*sinx*exp(x)dx
and ʃx*cosx*exp(x)dx-ʃx*sinx*exp(x)dx.)
4.Let y=y(x)
(1)Find the general solution of y"+4y'+3y=0 (5%)
(2)Find y where satisfies y(0)=0,y'(0)=1/2, and
y"+4y'+3y=x*cosx+exp(x) (15%)
(Hint: Even if you can not find ʃx*cosx*exp(x)dx,
you may write something till the last step.)
5.Define a function f:R→R by f(x)=0 if x belongs to R\Q,
and f(x)=1/p if x=q/p where p,q belong to Z, p≧1 and gcd{p,q}=1.
Show that lim f(x)=0 (15%)
x→1/2
6.Let f,g:[0,1]→R, be continuous functions. Define h(x)=max{f(x),g(x)}
for all x belong to [0,1]. Show that h(x) is also a continuous function.
(15%)
(Hint: If you have no smart idea, how about considering
the cases f(a)=g(a) and f(a)≠g(a) separately.)
7.Find all the values of c such that f(x)=(3/2)x^4-2x^3-6x^2+c=0
has four distinct real roots. (15%)
(Hint: Sketch the graph y=(3/2)x^4-2x^3-6x^2+c)
8. Suppose x^(2/3)+y^(2/3)=1. Find y"(1/8) if y(1/8)=((27)^0.5)/8 (15%)
9.Discuss the convergence or divergence of the integrals
∞ ∞
ʃ(sinx/x)dx and ʃ(|sinx|/x)dx (20%)
0 0
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.239.147
推 miraculouswi:應該調查有幾個大一的會寫這份 微分方程= = 11/18 22:48
推 wayne315315 :據說除了我之外都會寫 11/18 23:09
推 deepwoody :好誇張= = 11/18 23:44
推 ro9956882 :上課筆記啦@@ 11/19 00:00
推 liltwnboiz :二樓裝弱 11/19 00:22
推 Bourbaki :可以貼上∫ 11/19 05:48
→ harveyhs :喔喔ʃ,∫我一開始是覺得看起來差不多啦XDD 11/19 09:19