精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰偏微分方程式導論 課程性質︰系必修 課程教師︰黃信元 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2012 5/15 考試時限(分鐘):110分鐘 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : 2 __ A (20 pts.) Show that there exists at most one solution u \in C (Ω)∩C(Ω) of the following problem △u=f in Ω u=g on ðΩ 1 n where Ω is a C open bounded connected set \in R , f \in C(Ω) and g \in C(ðΩ). (Hint: maximum principle or energy method.) B (20 pts.) Solve the Dirichlet problem for the exterior of a circle. 2 2 2 u + u =0 for x +y >a xx yy 2 2 2 u=h(θ) for x +y =a 2 2 u bounded as x +y ---> ∞ (You can use any method you wish.) C (20 pts.) If u(x,y)=f(x/y) is a harmonic function, solve the ODE satisfied by f. D (20 pts.) Assume g is continuous function on ðB(0,r). Here B(0,r)={x||x|<r}. The solution of △u=0 in B(0,r) u=g on ðB(0,r) is given by 2 2 r -|x| g(y) u(x)=---- ∫ ---- dS(y). ω r ðB(0,r) |x-y|^n n Show that lim u(x)=g(x_0) x->x_0 where x \in B(0,r), x_0 \in ðB(0,r). E (20 pts.) State and prove Liouville's Theorem in PDE. Note. \in 代表 "屬於"符號 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.249.241