精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分甲(下) 課程性質︰系定必修 課程教師︰黃漢水 開課學院:生機、生工、地質、工管 開課系所︰數學系 考試日期(年月日)︰2008/06/15 考試時限(分鐘):170分鐘 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : 一 Find the equation of the tangent plane to the surface (e^x)yz + 3(z^2) - 2(y^2)z - 10 = 0 at the point (0,1,2) (15%) 二 Let D = {(x,y,z)︱x^2 + y^2 + z^2 ≦ 50 } be a thin plane and the temperature at the point (x,y,z) on the D is T(x,y,z) = 9(x^2) + 9(y^2) + 9(z^2) + 6xy + 8yz Find the highest and lowest temperatures (25%) 2 4 _______ 三 Find the integral ∫[∫ 6x√y^2 + 9 dy]dx (15%) 0 x^2 四 Let D = {(x,y)︱(x-2)^2 + y^2 ≦ 4 , y≦0 } be a thin plane (20%) Suppose that the density at the point (x,y) is den(x,y) = -12y (1) Find the mass of D (2) Find the center of mass of D 五 Let D = {(x,y,z)︱x^2 + y^2 + z^2 ≦ 25 , z≧3 } Suppose that the density at the point (x,y,z) is den(x,y,z) = 12z Find the mass of D (15%) 六 Let D = {(x,y)︱x^2 + y^2 ≦ 16 , y≧0 } and C = σD be the bound of D Find the intergal ∫(2xy + 3x)dx + (x^2 + 2x)dy (10%) c -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.165.108.21