精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分甲下 課程性質︰必修 課程教師︰黃漢水 開課學院:工學院 開課系所︰土木工程學系 考試日期(年月日)︰100/06/14 考試時限(分鐘):40分鐘 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題: → → → → 一、Let F(x,y,z)= 2y cosz i + e^x sinz j + xe^y k and S is the hemisphere x^2 + y^2 + z^2 = 16 , z≧0 , oriented upward. (30%) → Find the integral ∫∫ curl F‧dS. [Hint: use Stokes' Theorem] S → → → → 二、Let F(x,y,z)= x^4 i - x^3 z^2 j + 4xy^2 z k and S is the surface of the solid bounded by the cylinder x^2 + y^2 = 1 and the planes z = x + 2 and z = 0, with outward orientation. → (1) Find div F . (10%) → (2) Find the integral ∫∫ F‧dS. [Hint: use Divergence Theorem] S → → → → 三、Let F(x,y,z)= 2x^2 y i + 2xy^2 j + 4xyz k and S is the surface of the tetrahedron bounded by the four plane x = 0, y = 0, z = 0 and x + 2y + z = 2, with outward orientation. → Find the integral ∫∫ F‧dS. [Hint: use Divergence Theorem] (30%) S -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.4.191