課程名稱︰微積分乙
課程性質︰系定必修
課程教師︰黃漢水
開課系所︰管院的系
考試時間︰6/22
是否需發放獎勵金:是
(如未明確表示,則不予發放)
試題 :
1.Find the equation of the tagent plane to the surface
xy^2 + 3xz - 2yz + 33 = 0 at the point (-1,2,3) (20%)
2.Let D = {(x,y,z) | x^2 + y^2 + z^2 = 50} and the temperature at
the point (x,y,z) on the D is T(x,y,z) = 6xy + 8yz
Find the highest and the lowest temperatures. (20%)
2 4
3.Find the integral ∫ ∫ x[(y^2+9)]^1/2 dydx (20%)
0 x^2
4.Let D = {(x,y) | (x - 3)^2 + y^2 ≦ 9 , y ≧ 0} be a thin plate.
Suppose the density at the point (x,y) is den(x,y)=(x^2 + y^2)^1/2
Find the mass of D. (20%)
5.Let D ={(x,y,z) | x^2 + y^2 +z^2 ≦ 25 , z ≧ 0}.
Find the integral ∫∫∫(x^2 + y^2 + z^2)^1/3 dxdydz (20%)
D
--
「聲音不是音樂,藏在聲音裡的感情,才是音樂。」
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.239.77