精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分乙下 課程性質︰必修 課程教師︰黃漢水 開課學院:醫學院 開課系所︰牙醫、物治、職治、公衛、農化、藥學、醫技 考試日期(年月日)︰2012/06/19 考試時限(分鐘):120min. 是否需發放獎勵金:yes (如未明確表示,則不予發放) 試題 : 一、Let f(x,y,z)=ln(x^2 + 2y + 3z). Find the gradient and the maximum value of the directional derivative of f(x,y,z) at the point (2,1,2). (20%) 二、Let D={(x,y)│x^2 + y^2 ≦40, y≧0} and the temperature of the point (x,y) on D is T(x,y)=2x^2 + 6xy - 6y^2. Find the higest and lowest temperatures on D. (20%) 0 ┌ √(4-x^2) 12 ┐ 三、Find the integral ∫ │ ∫ ──────── dy │ dx. (20%) -2└ - √(4-x^2) 1 + x^2 + y^2 ┘ 四、Let D = {(x,y)│(x-2)^2 + y^2 ≦4, x^2 + y^2 ≧ 4. Suppose the density at the point (x,y) is den(x,y) = √(x^2 + y^2). Find the mass of D. (20%) 五、Let K = {(x,y,z)│x^2 + y^2 + z^2 ≦25, z≧3} be a solid with density function den(x,y,z) = √(x^2 + y^2). Find the mass and the center of mass of K. (20%) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 180.176.43.201