課程名稱︰代數導論二
課程性質︰系定必修
課程教師︰黃漢水 老師
開課學院:理學院
開課系所︰數學系
考試日期(年月日)︰2007.06.21
考試時限(分鐘):180 分
是否需發放獎勵金:是
(如未明確表示,則不予發放)
試題: 代 數 導 論 (二) 期 末 考 試 題 2007/6/21
Notation: Z is the set of all intergers,
Q is the set of all rational numbers,
R is the set of all real numbers and
C is the set of all complex numbers.
一、Let s_1=y_1+y_2+y_3, s_2=y_1‧y_2+y_2‧y_3+y_1‧y_3,
s_3=y_1‧y_2‧y_3 be the elementary symmetric functions in
Q[y_1, y_2, y_3]. Express
3 3 3
y_1(y_2+y_3)+y_2(y_1+y_3)+y_3(y_1+y_2) as a rational function of
s_1, s_2, s_3. (20%)
_________________________
二、Let α=√(1/2)^(1/2)+(-1/2)^(1/2). (20%)
(1) Find a monic irreducible polynomials f(x) 屬於 Q[x] such that f(α)=0.
(2) Let K be the splitting field of f(x) over Q. Find [K:Q].
(3) Descibe the group G(K∕Q).
三、Prove or disprove that there are fields F, K such that K is finite normal
extension of F and G(K∕F) is a cyclic group of order 7. (20%)
2
四、Let F=Z_3, f(x)=x -x-1 屬於 Z_3[x], E=Z_3[x]∕(f(x)) be a finite
4
field with |E|=9 and g(x)=x -2 屬於 E[x]. If K is the splitting field
of g(x) over E.
(1) Describe the group G(K∕E).
(2) Describe the group G(K∕F). (20%)
4 2
五、Let f(x)=x +(3-6i)x +(-8-6i) 屬於 C[x].
Solve the equation f(x)=0. (20%)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.7.59
※ 編輯: monotones 來自: 140.112.7.59 (07/02 21:30)