精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰代數導論二 課程性質︰系定必修 課程教師︰黃漢水 老師 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2007.06.21 考試時限(分鐘):180 分 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題: 代 數 導 論 (二) 期 末 考 試 題 2007/6/21 Notation: Z is the set of all intergers, Q is the set of all rational numbers, R is the set of all real numbers and C is the set of all complex numbers. 一、Let s_1=y_1+y_2+y_3, s_2=y_1‧y_2+y_2‧y_3+y_1‧y_3, s_3=y_1‧y_2‧y_3 be the elementary symmetric functions in Q[y_1, y_2, y_3]. Express 3 3 3 y_1(y_2+y_3)+y_2(y_1+y_3)+y_3(y_1+y_2) as a rational function of s_1, s_2, s_3. (20%) _________________________ 二、Let α=√(1/2)^(1/2)+(-1/2)^(1/2). (20%) (1) Find a monic irreducible polynomials f(x) 屬於 Q[x] such that f(α)=0. (2) Let K be the splitting field of f(x) over Q. Find [K:Q]. (3) Descibe the group G(K∕Q). 三、Prove or disprove that there are fields F, K such that K is finite normal extension of F and G(K∕F) is a cyclic group of order 7. (20%) 2 四、Let F=Z_3, f(x)=x -x-1 屬於 Z_3[x], E=Z_3[x]∕(f(x)) be a finite 4 field with |E|=9 and g(x)=x -2 屬於 E[x]. If K is the splitting field of g(x) over E. (1) Describe the group G(K∕E). (2) Describe the group G(K∕F). (20%) 4 2 五、Let f(x)=x +(3-6i)x +(-8-6i) 屬於 C[x]. Solve the equation f(x)=0. (20%) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.7.59 ※ 編輯: monotones 來自: 140.112.7.59 (07/02 21:30)