精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰代數導論二 課程性質︰系定必修 課程教師︰黃漢水 老師 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2007.04.26 考試時限(分鐘):180 分 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題: 代 數 導 論 (二) 期 中 考 試 題 2007/4/26 Notation: Z is the set of all intergers, Q is the set of all rational numbers, R is the set of all real numbers and C is the set of all complex numbers. __________ _______________ 一、Let α= √2^(1/3)-1, β= √30+10‧5^(1/2). Find two monic irreducible polynomials f(x), g(x) 屬於 Q[x] such that f(α)=0, g(β)=0. (20%) 2 3 _ 二、Prove that x -5 is irreducible over Q[√2]. (15%) 三、Let K be a finite extension field of a field F and D be a subring of K such that F 包含於 D 包含於 K. Prove or disprove that D is a field. (15%) __ 四、Let i=√-1, u=2+5i and v=3+i. Find four intergers a, b, c, d 屬於 Z 2 2 such that u=v(a+bi)+(c+di) and c +d <10. (20%) 3 3 五、Let f(x)=x -1, g(x)=x -2 be two polynomials in Z_p[x], where p is an odd prime and Z_p 包含於 F, Z_p 包含於 K are field extensions such that there are α_1, α_2, α_3 屬於 F, β_1, β_2, β_3 屬於 K 3 f(x)=x -1=(x-α_1)(x-α_2)(x-α_3), F=Z_p[α_1,α_2,α_3], 3 g(x)=x -2=(x-β_1)(x-β_2)(x-β_3), K=Z_p[β_1,β_2,β_3]. (1) Suppose that p≠1 (mod 3). What are F and K ? Prove your answer. (2) Suppose that p=7. What are F and K ? Prove your answer. (3) Suppose that p=31. What are F and K ? Prove your answer. (30%) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.7.59 ※ 編輯: monotones 來自: 140.112.7.59 (07/02 21:29)