精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰代數導論一 課程性質︰系定必修 課程教師︰黃漢水 教授 開課系所︰數學系 考試時間︰2006/10/30 10:20-11:20 是否需發放獎勵金:否 (如未明確表示,則不予發放) 試題 : 一 Let φ:Z24→S8 be group homomorphism such that φ(1)=(23)(1584) (1) Find φ(3),φ(4). (20%) (2) Find yhe Ker(φ). (15%) [2] 二 Let P=[4] be a point in the plane R^2 and φ:R^2→R^2 be a rotation about the point P through π/4. [a c] [p] Find an orthogonal matrix A=[b d] and v=[q] such that [x] for any u=[y] 屬於R^2 φ(u)=Au+v (30%) 三 Let Z21={0,1,2.....,20} and G={x屬於Z21│(x,21)=1}. We know that G is an abelian group with respect to multiplication. (1)Prove that│G│=12 (10%) (2)Find a,b,c屬於G such that ord(a)=2, ord(b)=2, ord(c)=3 and G=〈a〉X〈b〉X〈c〉.(25%) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.250.55