精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰線性代數 二 課程性質︰必修 課程教師︰黃漢水 開課學院:理 開課系所︰數學 考試日期(年月日)︰2009/4/22 考試時限(分鐘): 10:20 ~ 13:10 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : Let R be the field of all real numbers. 一 Let H = [ 1 1 -1 1 ] be in Mat4*4(R). Find det(H). (15%) [1] [ 1 1 -1 -1 ] [ 1 -1 -1 1 ] [ 1 -1 1 -1 ] 二 Let A = [ a ][ 1 2 3 4 ] be in Mat4*4(R). Find the determinant det(A+I_4). [ b ] [ c ] [ d ] (20%) 三 Let A = [ 2 -2 2 ] be in Mat3*3(R). (25%) [-2 5 -4 ] [ 2 -4 5 ] (1) Find the charateristic polynomial p(t) = (-1)^3 det(A-tI_3) of A. (2) Find the minimal polynomial m(t) of A. (3) FInd an invertible matrix K in Mat3*3(R) and a diagonal matrix Λ in Mat3*3(R) such that AK = KΛ and (K^T)K = I_3. (if such matrices exist) (4) How many matrices B in Mat3*3(R) such that B^2 = A. ∞ 四 Let u = {y_n} in R^∞ such that y_0 = 19, y_1 = -5 n=0 and for any n, 2y_n+2 = y_n+1 + y_n. (20%) (1) Find y_n. (2) Find the values y_10, y_13. (3) Find the limit lim y_n. (if such limit exists) n→∞ 五 Let A = [ 0.2 0.2 0.2 ] in Mat3*3(R) and u = [ 20 ]. (20%) [ 0.6 0.4 0.5 ] [ 20 ] [ 0.2 0.4 0.3 ] [ 15 ] (1) Find the all eigenvalues of A. [2] (2) Find the lim A^n u. (if such limit exists) n→∞ 註解 [1] 所有「屬於」符號皆以英文單字 "in" 表示。 [2] "Find the all eigenvalues of A" 為題目原文,並非筆誤。 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.91.80 ※ 編輯: robertshih 來自: 140.112.91.80 (04/22 18:24)