精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分上 課程性質︰必修 課程教師︰黃維信 開課學院:工學院 開課系所︰工程科學與海洋工程學系 考試日期(年月日)︰2007/1/17 考試時限(分鐘):120 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : 1. Calculate the integral. (30%) dx 2 (a) ∫——————— (b) ∫ 2^(-x)dx √(x√(x)+x) 1 -1 dx (c) ∫xtan xdx (d) ∫—————— 1+sinx+cosx (x^5+2) 5 (e) ∫———— dx (f) ∫sin xdx (x^2-1) 2. Let f be a one-to-one, twice differentiable function and let g=f^(-1).(10%) (a) Find g^n. (b) Suppose that the graph of f is concave up on an interval I. What can you say about the graph of f^(-1)? -1 1 1+x 3. Show that tanh x = — ln( —— ), -1<x<1, and sketch its graph.(15%) 2 1-x 4. Determine the centroid of the region between y=cosx, 0≦x≦3π/4 and the x-axis, and the volume generated by revolving the region about x-axis. (15%) 5. Determine whether the sequence converges, and if it does, give the limit.(10%) (a) n^(1/n) (b) n(a^(1/n)-1), a>0 6. Plot the polar curve and find its length. r=1+cost from t=0 to t=2π. (10%) 7. (a) Let{ a }be a convergent sequence. Prove that lim ( a - a ) = 0. n n→∞ n n-1 (b) What can you say about the converse? That is, suppose that { a } n is a sequence such that lim ( a - a ) = 0. Does { a } n→∞ n n-1 n necessarily converge? Prove or give a counterexample. (10%) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.228.120.184