精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分上 課程性質︰必修 課程教師︰黃維信 開課學院:工學院 開課系所︰工程科學與海洋工程學系 考試日期(年月日)︰2007/11/27 考試時限(分鐘):120 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : 1.Give an ε,δ proof for lim │2x+5│=3. (10%) x→-4 2.True or False? Justify your answers. (10%) (a) If lim [f(x)+g(x)] exists but lim [f(x)] does not exist, then x→c x→c lim [g(x)] dose not exist. x→c (b) If lim [f(x)+g(x)] and lim [f(x)] exist, then it can happen x→c lim [g(x)] does not exist. x→c (c) If lim [f(x)] exists, then lim √f(x) exists. x→c x→c (d) If lim [f(x)] exists, then lim 1/f(x) exists. x→c x→c (e) If f(x)<g(x) for all x≠c, then lim f(x) < lim g(x). x→c x→c 3. Prove that if there is a number B such that │f(x)/x│≦B for all x≠0, then lim f(x)=0. (10%) x→c 3 4. Find A and B given that the derivative of f(x)=╭ Ax +Bx+2, x≦2 │ is │ 2 ╰ Bx -A , x>2 everywhere continuous. (10%) n 5. Set f(x)=x ,n is a positive integer. (10%) (k) (a) Find f (x) for k=n. (k) (b) Find f (x) for k>n. (k) (c) Find f (x) for k<n. 6. Let f be a differentiable functuon. Use the chain rule to show that if f is even,then f' is odd. (10%) 7. Find the critical points, the local extreme values, and the concavity, 2 1/3 and then sketch the graph of f(x)=x (x-7) . (15%) 8. Calculate. (15%) 3 2 2 2 (a)∫(x -1)/x dx (b)∫[(t - a)(t - b)/ √t] dt π 2 (c)∫xcosx dx 0 3 x - 4 9. Find H'(2) given that H(x)=∫ x/(1+√t) dt. (10%) 2x -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.242.17 ※ 編輯: joeyer 來自: 140.112.242.17 (11/27 18:17) ※ 編輯: joeyer 來自: 140.112.242.17 (11/27 18:18)