精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰應用數學三 課程性質︰系必修 課程教師︰賀培銘 教授 開課學院:理學院 開課系所︰物理學系 考試日期(年月日)︰2009/04/16 考試時限(分鐘):180 是否需發放獎勵金:是! 試題 : (total grades = 110) [如果答案正確,沒有計算過程不會扣分;但答案未化約到最簡形式可能會酌量扣分] ∞ -ax 1.(10%) Let f(a) = ∫ dx e . Which one (ones) of the following can be (and 0 only be) defined by analytic continuation? (a) f(1); (b) f(-1); (c) f(0); (d) f(-1-i); (e) f(1+i). 2.(5%) Afunction f(z) with n simple poles at z (a = 1,…,n) is analytic a everywhere else on the complex plane. (Let the residue at z bedenoted R .) a a f(z) approaches to a constant C as z → ∞. Find the explicit expression of f(z). 3.(20%) Consider the following functions on the complex plane: (A) (z+1)/z, (B) (z+1)/z^(1/2), (C) cosh(z), (D) log(sinh(z)), (E) e^(1/z). (a) Which one(s) of the above has (have) branch cut(s)? (b) Which one(s) of the above has (have) simple pole(s)? 4.(15%) ∞ x A ≡ ∫ dx ──── = ? (1) 0 x^3 + 1 (Recall: sin(π/3) = sin(2π/3) = (√3)/2. ) 5.(15%) ∞ x^(1/3) A ≡ ∫ dx ──── = ? (2) 0 (x+1)^2 6.(15%) For large n, using saddle point approximation, find the lowest order approximation of ∞ -n A ≡ ∫ dx cosh (x). (3) 0 7.(15%) For large n, using saddle point approximation, find the lowest order approximation of 2π 2n A ≡ ∫ dx sin (nx). (4) 0 8.(15%) For small g, using saddle point approximation, find the leading order term O(1) and the next-to-leading order term O(g) of the integral ∞ -z0[(x-z0)^2/2 + g(x-z0)^4/4] A ≡ ∫ dx e , (5) -∞ where z0 = 3e^(iπ/4). (Warning: The final answer can not involve ambiguous expressions such as √z0.) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.102.7