精華區beta NTU-Exam 關於我們 聯絡資訊
課程性質︰選修 開課系所︰化學系 2003. 6.20 1.State whether the given function is even or odd. Find the first three nonvanishing terms of its Fourier series. Sketch the function and partial sum with three terms. (5%*2=10%) a)f(x)= x^2 / 2 (-π<x<π) b)f(x)={x -π/2 < x < π/2 0 2.Find the first four nonvanishing terms of complex Fourier series of the following functions: f(x) = x^2 (-π<x<π) (10%) 3.Show that the complex Fourier coefficients of an even function are real and thost of an odd function are pure imaginary. (10%) 4.Find the steady-state oscillation of y''+cy'+y = r(t) with c>0 and N r(t) = Σ (a cos nt + b sin nt) n=1 n n (10%) 2 ∞ 2 2 1 π 2 5.Using the Parseval's identity 2a + Σ (a +b ) = ─∫ f(x) dx , prove that 0 n=1 n n π -π 1 1 1 π^4 1 + ─ + ─ + ─ + ... = ─ 3^4 5^4 7^4 96 (Hints:use f(x) = x if -π/2 < x < π/2 π-x if π/2 < x < 3π/2 ) (10%) 6.Find the Fourier transform of the following functions: (4%*4=16%) a)f(x) = e^(-x) if x>0 0 if x<0 b)f(x) = x*e^(-x) if x>0 0 if x<0 c)f(x) = e^x if x>0 e^(-x) if x<0 d)f(x) = e^(-α*x^2) , α>0 7.a)Show that if f(x) has a Fourier transform, so do f(x-a), and F{f(x-a)} = (e^(-iωa)*F{f(x)} b)Using (a), obtain formula 1 in the following table, from formula 2. ^ ^ c)Show that if f(ω) is the Fourier transform of f(x), then f(ω-a) is the Fourier transform of e^(iax)*f(x). d)Using (c), oftain formula 3 from formula 1. (4%*4=16%) ┌─┬──────────┬──────^ ─────────────────┐ │ │ f(x) │ f(ω)=F(f) │ ├─┼──────────┼────────────────────────┤ │1 │f(x)=1 if -b<x<b │ √(2/π) * (sin bω / ω) │ │ │ 0 otherwise │ │ ├─┼──────────┼────────────────────────┤ │2 │f(x)=1 if b<x<c │(e^(-ibω) - e^(-icω))/(iω√2π) │ │ │ 0 otherwise │ │ ├─┼──────────┼────────────────────────┤ │3 │f(x)=cosx if 0<x<a │(1/√2π)[(sina(1-ω))/(1-ω)+(sina(1+ω))/(1+ω)] │ │ 0 otherwise │ │ └─┴──────────┴────────────────────────┘ 8.Simultaneous Diagonalization The Huckel matrix for cyclic polyene with N carbons is α β β β α β β α β H=[ … ] β α β β β α verify by direct substitution that the eigenvectors of the Huckel matrix H are given by the column vectors of Fourier matrix: 1 1 1 … 1 1 ω ω^2 … ω^(N-1) 1 ω^2 ω^4 … ω^(2(N-1)) C=[c1,c2,...,cN]=[… ] with 1 ω^(N-1) ω^(2(N-1)) … ω^((N-1)^2) ω= e^(2πi/N) and ω^N = e^(2πi) = 1 Are these eigenvectors normalized? If not, what are the normalization factor for each eigenvector? With these eigenvectors, it is straightforward to find out the eigenvalues for the Huckel matrix H by matrix-vector multiplication Hc =λ c j j j (20%) Total:102% -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.229.213.142