推 ketsu1109 :已收入精華區 01/20 01:10
課程名稱︰交換電路與邏輯設計
課程性質︰系訂必修
課程教師︰李君浩 簡韶逸 李建模 盧奕璋
開課學院:電機資訊學院
開課系所︰電機系
考試日期(年月日)︰2009/01/16
考試時限(分鐘):110分鐘
是否需發放獎勵金:是 謝謝
(如未明確表示,則不予發放)
試題 :
1. [12 points] Design a positive-triggered D flip-flop with only the basic
logic gates (NOT, AND, OR, NAND, NOR, and XNOR).
2. Solve the following problems.
(a) [15 points] Design a 3-bit counter which counts in the sequences CBA =
001, 011, 010, 110, 111, 101, 100, (repeat) 001... with only positive-
triggered T flip-flops and NAND gates.
(b) [5 points] Following (a), what will happen if the counter is started in
state 000?
3. The state transition table of the sequential circuit with one input X and
one output Z is as follows.
+ + +
│ A B C │ Z
│ │
A B C │ X=0 X=1 │ X=0 X=1
────┼────────┼─────
│ │
0 0 0 │ 0 1 1 0 1 0 │ 0 1
│ │
0 0 1 │ 0 0 0 0 1 0 │ 1 0
│ │
0 1 0 │ 1 0 0 1 0 0 │ 0 1
│ │
0 1 1 │ 0 1 0 0 0 0 │ 1 0
│ │
1 0 0 │ 1 0 0 0 0 0 │ 0 1
│ │
(a) [3 points] Is this a Mealy machine or Moore machine? Draw the state
graph.
(b) [6 points] Please provide the next-state maps for the flip-flops.
(c) [4 points] If D flip-flops are used, please provide the input maps and
input equations for the flip-flops, and the the output maps and output
equations for Z.
(d) [4 points] Following (c), please draw the circuit to implement this
design.
(e) [5 points] Assume that the initial state of the flip-flops is 000. For
an input sequence of X=01101, give a timing diagram for the clock, X,
A, B, C, and Z. State changes occur on the rising clock edge, and X
changes between rising and falling edges.
(f) [4 points] What is the correct output sequence for Z? Please indicate
all false outputs on the diagram, if they exist.
4. A sequential circuit, has one input (X) and one output (Z). Input sequence
ending in 111 or 000 will produce an output Z=1 coincident with the last
bit of input sequence. The circuit resets after every four inputs.
A typical sequence of inputs and outputs is:
X = 1101│1110│0000│0101│1111
Z = 0000│0010│0011│0000│0011
(a) [10 points] Construct a state table with minimum number of states.
(Hint: total 10 states.)
(b) [8 points] Draw the Mealy state graph.
5. An iterative circuit has a form in the following figure. The output Z is 1
if the total number of ones in input X is odd and the total number of ones
in input Y is even, and otherwise Z is 0, where X = x x x ...x ...x , and
1 2 3 i n
Y = y y y ...y ...y
1 2 3 i n
x y x y x y x y
1 1 2 2 i i n n
│ │ │ │ │ │ │ │
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
┌───┐ ┌───┐ ┌───┐ ┌───┐ ┌────┐
│ │ │ │ │ │ │ │ │ │
│ Cell │ │ Cell │ │ Cell │ │ Cell │ │ Output │
─→│ │─→│ │... │ │─→│ │... │ Network│
│ 1 │ │ 2 │ │ i │ │ n │ │ │
└───┘ └───┘ └───┘ └───┘ └────┘
State State State State State │
1 2 i i+1 n+1 │
↓
Z
(a) [6 points] Find the Moore state table for the iterative circuit. (Hint:
state i may contain more than 1-bit.)
(b) [8 points] Find the minimum SOP forms of a typical cell and the output
network.
(c) [4 points] Describe the initial state and simplify the first cell.
(d) By feeding x and y serially instead of parallelly, the iterative
i i
circuit can be converted to the sequential circuit. Plot the sequence
circuit and output network.
6. [Bonus 5 points] The following verilog code describes some certain flip-
flop we discuss in class. What is it? Show your inference by drawing the
circuit and labeling each gate corresponding to the gate name in the code.
module mysteryFF (clock, inport, outport);
input clock;
input [1:0] inport;
output [1:0] outport;
wire clock_n;
wire [5:0] midport;
not not0 (clock_n, clock);
and and0 (midport[0], inport[0], clock_n, outport[1]);
and and1 (midport[1], inport[1], clock_n, outport[0]);
and and2 (midport[4], clock, midport[2]);
and and3 (midport[5], clock, midport[3]);
nor nor0 (midport[2], midport[1], midport[3]);
nor nor0 (midport[3], midport[0], midport[2]);
nor nor0 (outport[0], midport[5], outport[1]);
nor nor0 (outport[1], midport[4], outport[0]);
endmodule
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.5.78