精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰工程數學一 課程性質︰必修 課程教師︰徐治平 開課學院:工學院 開課系所︰化工系 考試日期(年月日)︰101/1/13 考試時限(分鐘):10:20 ~ 12:10 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : 1.Find the Laplace transform of f(t) (6% each) t 1 - cosh(au) a)∫ ──────── du 0 u b)(t^2)sin(ωt) c)f(t)= ╭ 1 , 0<t<1 │ 0 , 1<t<2π ╰ cost , 2π<t d) f(t) │ │ │ │ 2│ ∕╲ │ ∕ ╲ │ ∕ ╲ │ ∕ ╲ │ ∕ ╲ │ ∕ ╲ └─────────────── t 0 1 2 4 2.Find the inverse Laplace transform of F(s) = Lf(t) (8% each) 6s-4 a)F(s)= ────── s^2-4s-20 (s-1)exp(-s) b)F(s)= ─────── s(s+1) s c)F(s)= ────── (s^2-1)^2 12s-24 d)F(s)= ──────── (hint:use convolution theorem) (s^2+4s+40)^2 1 e)F(s)= ──────── (hint:use convolution theorem) (s^2+4s+13)^2 3.Using the method of Laplace Transformation to solve initial value problem: (12% each) d^2 y d^2 z dy │ a) ──── - 3 ──── + 2y = 4t with y(0)=1 , ──│ = -1 d t^2 d t^2 dt │t=0 b) ╭ d^2 y d^2 z dz │ ──── - ──── + ── - y = f_1(t) │ d t^2 d t^2 dt │ │ d^2 y d^2 z dy │ 2 ──── - ──── - 2 ── + z = f_2(t) │ d t^2 d t^2 dt ╰ dy dz ╭ f_1(t) = exp(t) - 2 with y(0) = ── = z(0) = ── = 0 , where │ dt dt ╰ f_2(t) = -t 4.Use Laplace Transformation to solve the integral equation: (12%) t y(t)= t - 2 + cost + y'(t) + ∫ cos(t-u)y(u)du 0 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.252.204