精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰工程數學 課程性質︰必修 課程教師︰徐治平 開課學院:工學院 開課系所︰化工系 考試日期(年月日)︰2012/4/13 考試時限(分鐘):110 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : 1. Solve the following Sturm-Liouville problems, where λ is a real value.(15% each) (a) y"+λy=0, y(-π)=y(π), y'(-π)=y'(π) (b) y"+λy=0, y(0)=0, 3y(1)+y'(1)=0 (c) y"+λy=0, y(4)=0, y'(0)=0 2. Find the general solution of the following equations in terms of Bessel functions. (10% each) (a)9x^2y"-27xy'+(9x^2+35)y=0. Hint: let u=y/x^2 (b)4x^2y"+ 8xy'+(4x^2-35)y=0. Hint: let u=y√x 3. Show that the equation (15%) d^2 y dy sinθ─── + cos── + n(n+1)(sinθ)y=0 dθ^2 dθ can be transformed into a Legendre's equttion by letting x=cosθ 4. Expand each of the following functions in a series of Legendre polynomials, and evaluate the coefficients of the first three terms (10% each) (a)cos(πx/2), -1<x<1 (b)1+2x-x^2 The first three Legendre polynomals are P0(x)=1, P1(x)=x, P2(x)=(1/2)(3x^2-1) List of integrals ∫x sin(cx)dx = sin(cx)/c^2 - xcos(cx)/c ∫x^n cos(cx)dx = (x^n sin(cx)/c - (n/c)∫x^(n-1)sin(cx)dx -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.22.252
s93015a :第三題好像應該長這樣: 04/13 19:26
s93015a : d^2 y dy 04/13 19:26
s93015a :sinθ─── + 2cos── + n(n+1)(sinθ)y=0 04/13 19:26
s93015a : dθ^2 dθ 04/13 19:26
s93015a :才有可能推到Legendre equation耶 04/13 19:27
s93015a :是題目出錯還是我算錯 04/13 19:28
jsaon92 :題目沒錯 04/13 23:19
princetonboy:安安你好安安 04/14 01:11
s871526117 :題目上是原本的樣子ㄟ 04/16 00:43