推 bookh :感謝分享 12/26 03:24
課程名稱︰工程數學上
課程性質︰系定必修
課程教師︰蕭浩明
開課學院:工學院
開課系所︰機械工程學系
考試日期(年月日)︰2010/01/11
考試時限(分鐘):120
是否需發放獎勵金:是
(如未明確表示,則不予發放)
試題 :
1. Use Gaussian-Jordan elimination to slove X (15%)
2X1 - 4X2 + X3 = 0
{ X1 + X2 + 4X3 = 5
3X1 + X2 - 3X3 = -1
2. Determine the eigenvalues and eigenvectors of (10%)
┌ ┐
│cosθ -sinθ│
A = │sinθ cosθ│
└ ┘
3. ┌ ┐
│1 0 2│
A = │2 1 1│
│1 1 1│
└ ┘
-1 T
Find A using (a) [A_ij] /|A| (b) elementary row operations (15%)
4. ┌ ┐
│1 1 -2│ 4 3 2
A = │-1 2 1│ evaluate 2A - 4A - 2A - 7A + 3I = ? (10%)
│0 1 -1│
└ ┘
-1
5. Transform the following matrix A to a diagonal matrix D using D = P AP
┌ ┐
│7 -2 1│
A = │-2 10 -2│ (15%)
│1 -2 7│
└ ┘
6. ┌ ┐ (15%)
│1 3│
A = │2 2│ (a) Determine its eigenvalues λ1 and λ2
└ ┘
* * -1
(b) Find the eigenvalues λ1 and λ2 of A
* *
(c) Find the relationship betweenλ1 and λ1 ,λ2 and λ2
7. Use the method of Frobenius to find the general solution near x=0 of
2 2
x y"+ xy'+ (x -1)y = 0 (20%)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 111.249.2.203