精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰工程數學上 課程性質︰系訂必修 課程教師︰蕭浩明 開課學院:工學院 開課系所︰機械工程學系 考試日期(年月日)︰2011/01/10 考試時限(分鐘):120 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : 2 1.Solve (x + 2x + 1)y'' - 2(x + 1)y' + 2y = 0 y(0)=a0 y'(0)=a1 By Taylor Series Method (15%) 2.Use power series method to find the general solution near x=2 of y'' - (x - 2)y' + 2y = 0 (15%) Hint:Use a concept learned in ENG MATH 1 to transfer one variable to another and SHIFT the expansion point to zero. 3.Determine the eigenvalues and eigenvectors of ┌ ┐ │cosθ -sinθ│ A = │sinθ cosθ│ (15%) └ ┘ 4.Find how many independent chemical reactions from the following list: i. 4 NH + 5 O = 4 NO + 6 H O 3 2 2 ii. 4 NH + 3 O = 2 N + 6 H O 3 2 2 2 iii. 4 NH + 6 NO = 5 N + 6 H O 3 2 2 iv. 2 NO + O = 2 NO 2 2 v. 2 NO = N + O 2 2 vi. N + O = 2 NO 2 2 (20%) Hint:Write the above six chemical reactions in the matrix form and perform the necessary calculations. -1 5 5.Use Cayley-Hamiton theorem to calculate A =? and A =? ┌ ┐ │-4 5 5│ A = │-5 6 5│ │-5 5 6│ └ ┘ (20%) 6.Find the eigenvalues and eigenvectors of A and prove A's eigenvectors are orthogonal. ┌ ┐ │2 4 -6│ A = │4 2 -6│ │6 -6 -15│ (20%) └ ┘ T Hint:Eigenvector Orthogonality: X X = 0 ,where X and X are eigenvectors. j i i j -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.211.46