精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微乙 課程性質︰必修 課程教師︰張秀瑜 開課學院:理學院 開課系所︰經濟/管院/地理 考試日期(年月日)︰2011/5/24 考試時限(分鐘):110分鐘 是否需發放獎勵金:請~ (如未明確表示,則不予發放) 試題 : 1.(24%)Find the following partial derivatives. Assume all functions are differentiable. x ∂f (1)f(x,y)=∫cos(t^2)dt. find ___ y ∂x ∂u (2)u(x,t)=f(x+at)+g(x-at). find ___ ∂t ∂z ∂ ∂z (3)z=f(x,y), x=rcosθ, y=sinθ, find_____ and ___(___ ) ∂θ ∂r ∂x 2.(10%) If f(x,y)=(y+x^5)^1/5, find fx(0,0) 3.(15%) Let f(x,y)=tan^-1(x+2y) (a)Explain why f is differentiable? (b)Find the linearization L(x,y) of f at the point (1,0) → (c)Find Duf(1,0), where u=(√2/2, √2/2) 4.(10%) Use differentials to estimate the amount of tin in a closed tin can with diameter 8cm and height 12cm if the tin is 0.05cm thick. 5.(12%) Find equations of (a)the tangent line and (b)the normal line to the surface x^2+2y^2-3z^2=3 at the point(2,-1,1) 6.(16%) Find the extreme values of f(x,y)=e^-xy on the region inside x^2+4y^2=1 7.(16%) Find the local maximum and minimum values and saddle points of f(x,y)=2x^3+xy^2+5x^2+y^2 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 122.116.37.43 ※ 編輯: jech801127 來自: 122.116.37.43 (06/22 00:09) ※ 編輯: jech801127 來自: 122.116.37.43 (06/22 00:48)