精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱:微積分乙下 課程性質︰共同必修 課程教師︰張樹城 開課學院:管院 開課系所︰會計系/財金系/工管系企管組/國企系/地理系/經濟系 考試日期(年月日)︰2011/06/23 考試時限(分鐘):110分鐘 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : 1.(20%) Compute the followings: (a) ∫∫e^(x^2+y^2)dxdy, where R={(x,y):x^2+y^2≦1, y≧0} R (b) 1 1/2 ∫∫ e^(-x^2) dxdy 0 y/2 (c) ∫∫∫dxdydz, where D={(x,y,z):0≦x≦1, 0≦y≦1-x, 0≦z≦1-(x+y)} D (d) ∫∫∫dxdydx, where D={(x,y,z):x^2+y^2+z^2≦1} D 2.(15%) Define f(x,y)=x^2+3xy+y^2 (a)Find all critical points of f(x,y) in the interior of unit circle:x^2+y^2<1 (b)By using the method of Lagrange multiplier to find all extremal points of f(x,y) on the circle:x^2+y^2=1 (c)Find all extremal points on the disk:x^2+y^2≦1 3.(15%) (a)Find dy/dx for x^2+siny-2y=0 (b)Find dz/dx and dz/dy for z=(e^x)sin(y+z) 4.(15%) Define xy(x^2-y^2) f(x,y)= ------------- ;(x,y)≠(0,0) x^2+y^2 = 0 ;(x,y)=(0,0) Show that (a) fx(0,0)=fy(0,0)=0 (b) fxy(0,0)≠fyx(0,0) 5.(10%)Show that 2xy+zx^100+zy^10 f(x,y,z)=------------------ ;(x,y,z)≠(0,0,0) x^2+y^2+z^2 =0 ;(x,y,z)=(0,0,0) is discontinuous at (0,0,0) 6.(10%) (a)Define F(x,y,z)=yi+xj+4k Find a real-valued function f(x,y,z) such that ▽f=F (b)Evaluate the following line integral (2,3,-1) ∫ ydx+xdy+4dz (1,1,1) 7.(15%)Define -y x M(x,y)=--------- and N(x,y)=--------- x^2+y^2 x^2+y^2 (a)Compute the line integral ∫ Mdx+Ndy , where Cr is the (counterclockwise) circle of radius r. Cr (b)Compute the line integral ∫ Mdx+Ndy, where C is any (counterclockwise) simple closed curve in which C enclosed region containing the point (0,0) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.241.147