→ monotones:麻煩板主幫忙補上,謝謝,辛苦了:)140.112.250.148 05/10
簡答:
1.(a) T
(b) F
(c) T
(d) F
(e) T
(f) F
(g) F
(h) T
(i) F
2.(a) P(Y=y)=(1-1/e)‧(1/e)^(y-1)
(b) Geometric(1-1/e)
(c) E(Y)=e/(e-1)
2 2
3.(a) (1/2π)‧e^(-(x_1+x_2)/2), -∞<x_1,x_2<∞
2 2
(b) (1/8π)‧e^(-(w_1+w_2)/8), -∞<w_1,w_2<∞
___ 2
(c) f(w_1)=(1/2√2π)‧e^(-w_1 /8) ~N(0,4)
___ 2
f(w_2)=(1/2√2π)‧e^(-w_2 /8) ~N(0,4)
(d) since f(w_1,w_2)=f(w_1)f(w_2)
(e) 1-e^(-1)
4.(a) (略)
︿ ___
(b) standard error of θ_1=1/√12n
(c) (略)
︿ __________________
(d) standard error of θ_2=√n/((n+2)‧(n+1)^2)
︿ ︿
(e) eff_n(θ_1,θ_2)=12n^2/((n+2)‧(n+1)^2)
︿ ︿ ︿
(f) MSE(θ_i)=Var(θ_i), i=1,2, θ_2 is better
n r
5.(a) Σ y_1: sufficient statistic
i=1
n r
(b) (Σ y_1)/n : MLE of θ
i=1
(c) (略)
(d) Fisher information: 1/(θ^2)
Asymptotic variance of the MLE: (θ^2)/n
n
6.(a) Σ log(y_i): sufficient and complete statistic
i=1
(b) (略)
(c) (略)
n
(d) (n-1)/Σ w_i: unbiased estimator
i=1
(e) Cramer-Rao lower bound: (θ^2)/n
n
(f) Var((n-1)/Σ w_i)=(θ^2)/(n-2): larger than the C-R lower bound
i=1
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.250.148