精華區beta NTU-Exam 關於我們 聯絡資訊
簡答: 1.(a) T (b) F (c) T (d) F (e) T (f) F (g) F (h) T (i) F 2.(a) P(Y=y)=(1-1/e)‧(1/e)^(y-1) (b) Geometric(1-1/e) (c) E(Y)=e/(e-1) 2 2 3.(a) (1/2π)‧e^(-(x_1+x_2)/2), -∞<x_1,x_2<∞ 2 2 (b) (1/8π)‧e^(-(w_1+w_2)/8), -∞<w_1,w_2<∞ ___ 2 (c) f(w_1)=(1/2√2π)‧e^(-w_1 /8) ~N(0,4) ___ 2 f(w_2)=(1/2√2π)‧e^(-w_2 /8) ~N(0,4) (d) since f(w_1,w_2)=f(w_1)f(w_2) (e) 1-e^(-1) 4.(a) (略) ︿ ___ (b) standard error of θ_1=1/√12n (c) (略) ︿ __________________ (d) standard error of θ_2=√n/((n+2)‧(n+1)^2) ︿ ︿ (e) eff_n(θ_1,θ_2)=12n^2/((n+2)‧(n+1)^2) ︿ ︿ ︿ (f) MSE(θ_i)=Var(θ_i), i=1,2, θ_2 is better n r 5.(a) Σ y_1: sufficient statistic i=1 n r (b) (Σ y_1)/n : MLE of θ i=1 (c) (略) (d) Fisher information: 1/(θ^2) Asymptotic variance of the MLE: (θ^2)/n n 6.(a) Σ log(y_i): sufficient and complete statistic i=1 (b) (略) (c) (略) n (d) (n-1)/Σ w_i: unbiased estimator i=1 (e) Cramer-Rao lower bound: (θ^2)/n n (f) Var((n-1)/Σ w_i)=(θ^2)/(n-2): larger than the C-R lower bound i=1 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.250.148
monotones:麻煩板主幫忙補上,謝謝,辛苦了:)140.112.250.148 05/10