精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰代數二 課程性質︰數學系選修 數學系碩士班數學組必選 課程教師︰朱樺 開課系所︰數學系所 考試時間︰950506 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : (1) (30%) Let $R=\mathbb{Z}[x}$. (a) Show that any ideal of $R$ is finitely generated. (b) Let $M$ be a maximal ideal of $R$. Show that it is impossible that $M \cap \mathbb{Z}=(0)$. (c) Show that any maximal ideal of $R$ can be generated by two elements. (d) Show that, for any $n$, there is an ideal cannot be generated by $n$ elements. (2) (15%) Let $R$ be a commutative ring, $M$ be an $R$-module. Then the annihilator of $M$ is $\Ann_R(M)=\{a \in R| aM=0\}$. Let $P$ be a finitely generated prime ideal of $R$ with annihilator $(0)$. Show that $\Ann_R(P/P^2)=P$. (3) (20%) Let $R=\mathbb{C}[x,y,z]$. Find the intersection of ideals $(xy+z, x+yz) \cap (x+z)$. (4) (25%) Let $F=\mathbb{Q}(\sqrt[3]{2})$ and $\alpha=a+b\sqrt[3]{2}+c\sqrt[3]{4} \in F$. (a) Find a monic cubic polynomial $f(x) \in \mathbb{Q}[x]$ such that $f(\alpha)=0$. (b) Determine which elements $\alpha$ are algebraic integers. (5) (25%) Let $R=\mathbb{Z}[\sqrt{-17}]$. Determine the ideal class group of $R$. (\lfloor \mu \rfloor=2\sqrt{|D|}/\pi) (6) (25%) (a) Classfy finitely generated modules over the ring $R=F[x]/(f(x))$, where $F$ is a field. Let $F$ be any one of the following fields: $mathbb{R}$, $\mathbb{Q}$, $\mathbb{F}_p$, $p$ is a prime, $f(x)=x^4+x^3+x^2+x+1$. (b) Find all fields $F$ such that the additive group $F^1$ have a structure of $R$-module. (c) Find all fields $F$ such that the additive group $F^2$ have a structure of $R$-module. --       ╓╮╓╮ ╓╮       ╟╢╰╫╫╮╟╢╓╖╮╮╭╥─╮╓╮ ╮╭╥─╮╭╥─╮       ╟╢ ╟╢ ╟╢╟╢║║╟╢ ║╟╢ ║╰╨╥╮╟╢ ║       ╟╢ ╟╢ ╟╢╟╢║║╟╢ ║╟╢ ║  ╟╢╟╫─╯       ╰╜ ╰╨╯╰╜╰╜╜╜╰╨─╯╰╨─╰╰─╨╯╰╨─╯ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.50.48