精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰代數一 課程性質︰數學系選修 數學系碩士班數學組必選 課程教師︰朱樺 開課系所︰數學系所 考試時間︰941124 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : (1) (25%) (a) Let $G$ be a group and $H$ be a subgroup. Prove or disprove: $Z(H) \subset Z(G)$. (b) Find the center of $\SL_n(\mathbb{Z})$. (c) Find the order of $Z(\SL_n(\mathbb{Z}))$. (2) (30%) (a) How many subspaces does $V=(\mathbb{F}_p)^5$ have? (b) Let $V$ be a vector space over a field $F$ of dimension > 1. Define $k=k(V)$ to be the least integer such that $V$ is a union of $k$ proper subspaces. Show that $k(\mathbb{F}_p^2)=p+1$. (c) Find $k(\mathbb{F}_2^3)$ and $k(\mathbb{F}_3^3)$. Give a conjecture for $k(\mathbb{F}_p^3)$. (d) Can you give a conjectture for $k(\mathbb{F}_p^n)$? (e) Show that, if $F$ is an infinite field, then $k(V)=\ifnty$. (3) (30%) (a) Let $F$ be a field and $A$, $B \in M_n(\mathbb{F})$. Show that, if one if $A$ and $B$ is invertible, then $AB$ and $BA$ are similar. (b) What is wrong with the following argument? Let $A=[a_{ij}]$ and $B=[b_{ij}] \in M_n(\mathbb{F})$. Define $\tilde{A}=[x_{ij}]$ and $\tilde{B}=[y_{ij}] \in M_n(K)$, where $K=\mathbb{Q}(x_{ij},y_{ij})$ is the rational function field of $2n^2$ variables. Since $\det \tilde{A} \neq 0$, it is invertible. Thus by (a), $\tilde{A}\tilde{B}$ and $\tilde{B}\tilde{A}$ are similar. That is, there is a matrix $P$ such that $P\tilde{A}\tilde{B}P^{-1} =\tilde{B}\tilde{A}$.(*) Now define a ring homomorphism $\Phi: \mathbb{Z}(x_{ij},y_{ij}) \rightarrow F$, by $x_{ij} \mapsto a_{ij}$, $y_{ij} \mapsto b{ij}$. Then $\Phi(\tilde{A})=A$, $\Phi(\tilde{B})=B$. Apply $\Phi$ to (*) and we get that $AB$ and $BA$ are similar. (c) Prove or disprove: for any two matrices $A$, $B \in M_n(\mathbb{F})$, $AB$ and $BA$ are similar. (d) Prove that $AB$ and $BA$ have the same characteristic polynomial. (4) (25%) (a) If $A$ is a real square matrix, then $A^tA$ has only nonegative eigenvalues. (b) If $A$ is a real square matrix, then $A=QB$ for some symmetric matrix $B$ and orthgonal matrix $Q$. --       ╓╮╓╮ ╓╮       ╟╢╰╫╫╮╟╢╓╖╮╮╭╥─╮╓╮ ╮╭╥─╮╭╥─╮       ╟╢ ╟╢ ╟╢╟╢║║╟╢ ║╟╢ ║╰╨╥╮╟╢ ║       ╟╢ ╟╢ ╟╢╟╢║║╟╢ ║╟╢ ║  ╟╢╟╫─╯       ╰╜ ╰╨╯╰╜╰╜╜╜╰╨─╯╰╨─╰╰─╨╯╰╨─╯ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.50.48