精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰代數一 課程性質︰數學系選修 數學系碩士班數學組必選 課程教師︰朱樺 開課系所︰數學系所 考試時間︰950114 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : (1) (20%) The derived series of a group are the groups $G^{(1)}=G'$, $G^{(i+1)}=(G^{(i)})'$. Find the derived series of the group $S_n$, $n>2$. (2) (20%) Let $SM$ denote the group of orientation-preserving motions of the real plane. Show that $SM$ is isomorphic to the subgroup $\{\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}: |a|=1, b\in \mathbb{C}\}$ of $\GL_2(\mathbb{C})$. (3) (20%) Let $G$ be a finite group and let $n<|G|$. Show that $G$ is isomorphic to a transitive subgroup of $S_n$ if and only if $G$ contains a subgroup $H$ of index $n$ such that neither $H$ nor any proper subgroup of $H$ is normal in $G$. (4) (20%) Analyze the group generated by $x, y$, with relations $x^4=x^2y^2=(xy)^2=1$. (5) (20%) the Lorentz group is defined to be the group $O_{3,1}=\{P \in M_4(\mathbb{R}): P^tI_{3,1}P=I_{3,1}\}$, where $I_{3,1}=\begin{pmatrix} I_3 & \\ & -1 \end{pmatrix}$. (a) Show that $e^{tA}$ is a one -parameter subgroup of $O_{3,1}$ if and only if $I+\epsilonA \in O_{3,1}$ where $\epsilon$ is a formal infinitesimal element. (b) Find the Lie algebra $\Lie(O_{3,1})$ of the group $O_{3,1}$. Find the dimension of $\Lie(O_{3,1})$ over $\mathbb{R}$. (6) (25%) Classify all groups of order 36. --       ╓╮╓╮ ╓╮       ╟╢╰╫╫╮╟╢╓╖╮╮╭╥─╮╓╮ ╮╭╥─╮╭╥─╮       ╟╢ ╟╢ ╟╢╟╢║║╟╢ ║╟╢ ║╰╨╥╮╟╢ ║       ╟╢ ╟╢ ╟╢╟╢║║╟╢ ║╟╢ ║  ╟╢╟╫─╯       ╰╜ ╰╨╯╰╜╰╜╜╜╰╨─╯╰╨─╰╰─╨╯╰╨─╯ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.50.48